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On Jacquet modules of discrete series: the first inductive
step
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Abstract. The purpose of this paper is to determine Jacquet mod-
ules of discrete series which are obtained by adding a pair of consec-
utive elements to the Jordan block of an irreducible strongly positive
representation such that the ϵ-function attains the same value on both
elements. Such representations present the first inductive step in the
realization of discrete series starting from the strongly positive ones.
We are interested in determining Jacquet modules with respect to the
maximal standard parabolic subgroups, with an irreducible essentially
square-integrable representation on the general linear part.
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1. Introduction

Discrete series representations present one of the most extensively studied parts of
the unitary dual of a reductive group over p-adic field, with numerous applications
in harmonic analysis and theory of automorphic forms. In the case of p-adic
classical groups, this prominent class of representations has been classified in the
work of Mœglin and Tadić ([11, 13]), under a natural hypothesis which now follows
from the work of Arthur ([1]). Some further details on the completion of this
classification can be found in [12]. According to this classification, discrete series
are in bijective correspondence with the so-called admissible triples consisting of
a Jordan block, an ϵ-function and a partial cuspidal support. Furthermore, each
discrete series can be obtained as a result of an inductive procedure consisting of
repeated adding of new consecutive pairs to the Jordan block, starting from the
strongly positive discrete series.

Thus, the strongly positive discrete series serve as the cornerstone in such
construction of discrete series. An algebraic classification of such representations
is given in [6] and, based on that classification, a complete description of Jacquet
modules of strongly positive discrete series has been determined in [7]. These
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results show that, if we denote by π⊗σ an irreducible representation contained in
the Jacquet module of strongly positive representation with respect to the maximal
standard parabolic subgroup, then σ is also a strongly positive discrete series, while
π is a ladder representation of a particular type, in terminology of [4]. We note
that such representations of general linear groups have lately been studied in detail
in [2], [4] and [5].

On the other hand, it is clear that the classical group parts of Jacquet
modules of non-strongly positive discrete series are representations belonging to
different classes, ranging from discrete series to non-tempered ones. It is natural to
initially extend the investigation of Jacquet modules of discrete series started in [7]
to discrete series obtained by adding a pair of consecutive elements to the Jordan
block of strongly positive discrete series such that the ϵ-function attains the same
value on these elements. This class of representations already shows substantial
differences from the strongly positive case and has played a fundamental role in
determininig the occurrence indices for discrete series representations of metaplec-
tic groups ([8]). In this paper, we are interested in deriving Jacquet modules of the
representations of mentioned type with respect to the maximal standard parabolic
subgroups, whose general linear part consists of an irreducible essentially square-
integrable representation. Even in this case, a variety of different representations
appear, which have to be considered separately.

Recently the main properties defining the ϵ-function attached to a discrete
series representation have been rewritten in terms of Jacquet modules in [18],
and these results are mainly expressed using Jacquet modules analogous to those
studied in this paper.

To determine the Jacquet modules we use elementary but non-standard
methods which are essentially different from the ones used in [7]. First, starting
from appropriate embeddings of discrete series σds , we apply the structural for-
mula of Tadić ([16]), combined with results of [7], to obtain all (not necessarily
irreducible) elements appearing in the Jacquet modules of the induced represen-
tation containing σds . Then, using a description of composition series of certain
generalized principle series, described in [10] and enhanced by [9, Proposition 3.2],
we derive all possible candidates for Jacquet modules of discrete series σds , to-
gether with their multiplicities. We note that the results of [10] also hold in the
unitary case, since they are completely based on the Mœglin-Tadić classification
and Jacquet modules method. To deduce whether an irreducible representation
π⊗ τ appears in the Jacquet module of σds or not, using a case-by-case consider-
ation we choose an element π′ ⊗ τ ′ appearing in the Jacquet module of τ and, by
means of transitivity of Jacquet modules, turn our attention to representations of
general linear groups having π⊗π′ in their Jacquet modules. This puts us in a po-
sition to deduce further information carried in the irreducible representation π⊗ τ
and, consequently, [18] can be used to determine whether such a representation
belongs to the Jacquet module of σds or not.

Our results, besides being interesting by themselves, might have applica-
tions in the theory of automorphic forms, where both discrete series and their
Jacquet modules play an important role. Also, one can use our results to identify
discrete series subquotients of generalized principal series, similarly as in [9].



Matić 3

We now describe the content of the paper in more details. In the second
section we recall the required notations and preliminaries. In the third section
we begin our study of Jacquet modules by solving certain elementary cases which
are used afterwards. The description of Jacquet modules in the most complicated
case, divided in several subcases, is provided in the fourth section. The exceptional
case is handled in Section 5.

The author would like to thank Marko Tadić for useful conversations on
Jacquet modules of representations of general linear groups and to Goran Muić
for his active interest in publication of this paper. Also, the author’s thanks go
to Šime Ungar for many useful suggestions and help with English language. The
author would also like to thank the referee for helping to improve presentation
style.

2. Notation and preliminaries

Let F denote a non-archimedean local field of characteristic different than two.
We will fix one of the following series {Gn} of classical groups over F .

In the case of odd orthogonal groups we fix an anisotropic orthogonal vector
space Y0 over F of odd dimension and consider the Witt tower based on Y0 . For
each n satisfying 2n + 1 ≥dimY0 , there is exactly one space Vn in the tower
of dimension 2n + 1. By Gn we denote the special orthogonal group of this
space. Similarly, if Vn stands for the symplectic space of dimension 2n in the
corresponding Witt tower, Gn will denote the symplectic group of this space. We
also consider the case of unitary groups U(n, F ′/F ), where F ′ denotes a separable
quadratic extension of F . We have also an anisotropic unitary space Y0 over F ′

and the Witt tower of unitary spaces Vn based on Y0 . The unitary group of the
space Vn of dimension either 2n+ 1 or 2n will be denoted by Gn .

A minimal parabolic subgroup in Gn will be fixed and we will consider
only standard parabolic subgroups with respect to this fixed minimal parabolic
subgroup. Abusing the notation, if we are working with unitary groups, then F ′

will denote a separable quadratic extension of F , and otherwise F ′ denotes F . If
F ′ is a separable quadratic extension, we denote by θ the non-trivial element of the
Galois group of F ′ over F . Otherwise, i.e., if F ′ = F , θ will denote the identity
mapping on F . For an irreducible representation π of GL(k, F ′), we denote by π̌
the mapping g 7→ π̃(θ(g)), where π̃ stands for the contragredient representation
of π . We say that π is self-dual if π̌ ≃ π .

We fix one of the series {Gn} as above. Let n′ be the Witt index of Vn if
Vn is symplectic or even-unitary group, and n′ = n− 1

2
(dimF ′(Y0)− 1) otherwise.

For 0 ≤ k ≤ n′ there exists a standard parabolic subgroup P(k) having Levi factor
naturally isomorphic to GL(k, F ′) × Gn−k . For finite length representations δ of
GL(k, F ′) and τ of Gn−k , we denote by δ o τ the representation parabolically
induced by δ ⊗ τ . For representations δi of GL(ni, F

′), i = 1, 2, . . . , k , and
a representation τ of Gn′ , we write δ1 × · · · × δk o τ for the representation
parabolically induced by δ1 ⊗ · · · ⊗ δk ⊗ τ .

The set of all irreducible admissible representations of Gn will be denoted by
Irr(Gn). Let R(Gn) denote the Grothendieck group of admissible representations
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of finite length of Gn and set R(G) = ⊕n≥0R(Gn). In a similar way we define
Irr(GL(n, F ′)) and R(GL) = ⊕n≥0R(GL(n, F

′)). Furthermore, we denote by
Irrsc(GL(n, F

′)) the set of all supercuspidal representations in Irr(GL(n, F ′)).
For σ ∈ Irr(Gn) and 0 ≤ k ≤ n we denote by r(k)(σ) the normalized Jacquet
module of σ with respect to the standard parabolic subgroup P(k) . Then r(k)(σ)
can be interpreted as an element of R(GL)⊗R(G). For σ ∈ Irr(Gn) we introduce
µ∗(σ) ∈ R(GL)⊗R(G) by

µ∗(σ) =
n∑

k=0

s.s.(r(k)(σ))

(s.s. denotes the semisimplification), and extend µ∗ linearly to the whole of R(G).

Using Jacquet modules for the maximal standard parabolic subgroups of
GL(n, F ′) we can also define m∗(π) =

∑n
k=0 s.s.(r(k)(π)) ∈ R(GL) ⊗ R(GL),

for an irreducible representation π of GL(n, F ′), and then extend m∗ linearly
to the whole of R(GL). Here rk(π) denotes the normalized Jacquet module of
π with respect to the standard parabolic subgroup having Levi factor equal to
GL(k, F ′)×GL(n− k, F ′).

For an admissible representation σ ∈ R(G) of finite length we write µ∗(σ) =∑
τ,σ′ τ ⊗ σ′ and introduce (mµ)∗(σ) ∈ R(GL)⊗R(GL)⊗R(G) by

(mµ)∗(σ) =
∑
τ,σ′

m∗(τ)⊗ σ′.

From now on, Irres(GL(n, F
′)) stands for the set of all essentially square-

integrable representations in Irr(GL(n, F ′)). The results of [19] show that each
representation δ ∈ Irres(GL(n, F

′)) is attached to a segment and we set δ =
δ([νaρ, νbρ]), where a, b ∈ R such that b − a is a nonnegative integer and ρ is
a unitary element of Irrsc(GL(nρ, F

′)) (this defines nρ ), while we denote by ν
the character of GL(n, F ′) defined by |det |F ′ . We recall that δ([νaρ, νbρ]) is the
unique irreducible subrepresentation of the induced representation νbρ× νb−1ρ×
· · · × νaρ .

We will frequently use the following equation:

m∗(δ([νaρ, νbρ])) =
b∑

i=a−1

δ([νi+1ρ, νbρ])⊗ δ([νaρ, νiρ]).

Note that multiplicativity of m∗ implies

m∗(
n∏

j=1

δ([νajρj, ν
bjρj]))

=
n∏

j=1

(

bj∑
ij=aj−1

δ([νij+1ρj, ν
bjρj])⊗ δ([νajρj, ν

ijρj])). (1)

We take a moment to state a result, derived in [16], which presents a crucial
structural formula for our calculations of Jacquet modules of representations of
classical groups.
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Lemma 2.1. Let ρ ∈ Irrsc(GL(nρ, F
′)) and k, l ∈ R such that k + l ∈ Z≥0 .

Let σ ∈ R(G) be an admissible representation of finite length. Write µ∗(σ) =∑
τ,σ′ τ ⊗ σ′ . Then the following holds:

µ∗(δ([ν−kρ, ν lρ])o σ) =
l∑

i=−k−1

l∑
j=i

∑
τ,σ′

δ([ν−iρ̃, νkρ̃])× δ([νj+1ρ, ν lρ])× τ⊗

⊗ δ([νi+1ρ, νjρ])o σ′. (2)

We put δ([νxρ, νyρ]) = 1 (the one-dimensional representation of the trivial group
if y = x− 1, and δ([νxρ, νyρ]) = 0 if y < x− 1.

We briefly recall the Langlands classification for general linear groups. As
in [3], we favor the subrepresentation version of this classification over the quotient
one.

For every δ ∈ IrresGL(n, F
′), there is a unique e(δ) ∈ R such that ν−e(δ)δ

is unitarizable. Suppose that δ1, δ2, . . . , δk are the representations belonging
to Irres(GL(n1, F

′)), Irres(GL(n2, F
′)), . . . , Irres(GL(nk, F

′)) respectively, with
e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk). Then the induced representation δ1× δ2×· · ·× δk has
a unique irreducible subrepresentation, which we denote by L(δ1 × δ2 × · · · × δk).
This irreducible subrepresentation is called the Langlands subrepresentation, and
it appears with multiplicity one in δ1 × δ2 × · · · × δk . Every irreducible represen-
tation π of GL(n, F ′) is isomorphic to some L(δ1 × δ2 × · · · × δk). For a given π ,
the representations δ1, δ2, . . . , δk are unique up to a permutation.

Similarly, throughout the paper we use the subrepresentation version of the
Langlands classification for classical groups, which also happens to be more ap-
propriate for our Jacquet module considerations. Thus, we realize a non-tempered
irreducible representation π of Gn as the unique irreducible (Langlands) sub-
representation of the induced representation of the form δ1 × δ2 × · · · × δk o τ ,
where τ is the tempered representation of Gt (this defines t), δi is an element
of Irres(GL(nδi , F

′)) attached to the segment [νaiρi, ν
biρi] for i = 1, 2, . . . , k , and

a1 + b1 ≤ a2 + b2 ≤ · · · ≤ ak + bk < 0 (note that e(δ([νaiρi, ν
biρi])) = (ai + bi)/2).

In this case, we write π = L(δ1 × δ2 × · · · × δk o τ).

We will now recall the Mœglin-Tadić classification of discrete series for
classical groups, which presents the framework for our study. Fix a certain tower
of classical groups (symplectic, orthogonal or unitary). Also, in the sequel we fix
an additive character ψ of F ′ . Every discrete series representation of such group is
uniquely described by its three invariants: partial cuspidal support, Jordan block
and ϵ-function.

The partial cuspidal support of a discrete series σ ∈ Irr(Gn) is an irre-
ducible cuspidal representation σcusp of some Gm such that there exists a repre-
sentation π ∈ R(GL(nπ, F

′)) such that σ is a subrepresenation of π o σcusp .

The Jordan block of σ , which we denote by Jord(σ), is the set of all pairs
(c, ρ) where ρ ∈ Irrsc(GL(nρ, F

′)) is self-dual and c is a positive half-integer such
that the following two conditions are satisfied:

1. c is not an integer if and only if L(s, ρ, r) has a pole at s = 0. The local L-
factor L(s, ρ, r) is the one defined by Shahidi (see for instance [14], [15]),
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where r =
∧2Cnρ is the exterior square representation of the standard

representation on Cnρ of GL(nρ,C) if Gn is a symplectic or even-orthogonal
group, and r = Sym2Cnρ is the symmetric-square representation of the
standard representation on Cnρ of GL(nρ,C) if Gn is an odd-orthogonal
group. For unitary groups, the appropriate definitions are discussed in [11]
and [13, Section 15].

2. The induced representation δ([ν−cρ, νcρ])o σ is irreducible.

To explain the notion of the ϵ-function, we first define Jordan triples. This
are triples of the form (Jord, σ′, ϵ) where

• σ′ is an irreducible cuspidal representation of some Gn .

• Jord is the finite set (possibly empty) of pairs (c, ρ), where ρ ∈ Irrsc(GL(nρ ,
F ′)) is a self-dual representation, and c > 0 is a half-integer such that c is an
integer if and only if L(s, ρ, r) does not have a pole at s = 0 (as above). For a
self-dual representation ρ ∈ Irrsc(GL(nρ, F

′)) we write Jordρ = {c : (c, ρ) ∈
Jord} . If Jordρ ̸= ∅ and c ∈ Jordρ , we put c = max{d ∈ Jordρ : d < c} , if
it exists.

• We say that two functions ϵ1, ϵ2 : Jord → {1,−1} are equivalent if for each
ρ ∈ Irrsc(GL(nρ, F

′)) such that Jordρ consists of integers and Jordρ(σ
′) ̸= ∅ ,

there is an sρ ∈ {1,−1} such that ϵ1((c, ρ)) = sρ · ϵ2((c, ρ)) for all (c, ρ) ∈
Jord. ϵ is now an equivalence class with respect to this equivalence relation.

Suppose that, for the Jordan triple (Jord, σ′, ϵ), there is a (c, ρ) ∈ Jord such
that ϵ((c , ρ)) = ϵ((c, ρ)). If we put Jord′ = Jord \{(c , ρ), (c, ρ)} and consider the
restriction ϵ′ of ϵ to Jord′ , we obtain a new Jordan triple (Jord′, σ′, ϵ′), and we
say that such a Jordan triple is subordinated to (Jord, σ′, ϵ).

We say that the Jordan triple (Jord, σ′, ϵ) is a triple of alternated type if
ϵ((c , ρ)) ̸= ϵ((c, ρ)) whenever c is defined and there is an increasing bijection
ϕρ : Jordρ → Jord′

ρ(σ
′), where

Jord′
ρ(σ

′) =

{
Jordρ(σ

′) ∪ {0} if c is not an integer and ϵ(min Jordρ, ρ) = 1;
Jordρ(σ

′) otherwise.

A Jordan triple (Jord, σ′, ϵ) dominates the Jordan triple (Jord′, σ′, ϵ′) if
there is a sequence of Jordan triples (Jordi, σ

′, ϵi), 0 ≤ i ≤ k , such that (Jord0, σ
′, ϵ0) =

(Jord, σ′, ϵ), (Jordk, σ
′, ϵk) = (Jord′, σ′, ϵ′), and (Jordi, σ

′, ϵi) is subordinated to
(Jordi−1, σ

′, ϵi−1) for i ∈ {1, 2, . . . , k} . A Jordan triple (Jord, σ′, ϵ) is called an
admissible triple if it dominates a triple of alternated type.

The classification given in [11] and [13] states that there is a one-to-one
correspondence between the set of all discrete series in Irr(G) and the set of
all admissible triples (Jord, σ′, ϵ) given by σ = σ(Jord,σ′,ϵ) , such that σcusp = σ′

and Jord(σ) = Jord. Furthermore, if (c, ρ) ∈ Jord is such that ϵ((c , ρ)) =
ϵ((c, ρ)), we set Jord′ = Jord \{(c , ρ), (c, ρ)} and consider the restriction of ϵ to
Jord′ . Let us denote this restriction by ϵ′ . Then (Jord′, σ′, ϵ′) is an admissible
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triple and σ is a subrepresentation of δ([ν−c ρ, νcρ]) o σ(Jord′,σ′,ϵ′) . Such induced
representation has exactly two discrete series subrepresentations, which are non-
isomorphic. Moreover, the induced representation δ([ν−c ρ, νc ρ]) o σ(Jord′,σ′,ϵ′)

is the direct sum of two non-isomorphic tempered representations τ+ and τ−
and there is a unique tempered representation τ ∈ {τ+, τ−} such that σ is a
subrepresentation of δ([νc +1ρ, νcρ])o τ (by [13, Section 6]).

We shall also say that the discrete series σ and its corresponding admissible
triple (Jord, σ′, ϵ) are attached to each other.

For (c, ρ) ∈ Jord such that (c , ρ) is defined, ϵ((c, ρ)) = ϵ((c , ρ)) if there is
some irreducible representation π ∈ R(G) such that

σ ↪→ δ([νc +1ρ, νcρ])o π.

Let us now assume that Jordρ consists of non-integers or Jordρ(σ
′) = ∅ . To

define ϵ on Jordρ it suffices to define ϵ((c, ρ)) for a single ordered pair (c, ρ) ∈ Jord.

If Jordρ ̸= ∅ consists of non-integers, we denote by cmin,ρ the minimum
of Jordρ , and set ϵ((cmin,ρ, ρ)) = 1 if there exists an irreducible representation
π ∈ R(G) such that

σ ↪→ δ([ν
1
2ρ, νcmin,ρρ])o π.

Otherwise, let ϵ((cmin,ρ, ρ)) = −1.

If Jordρ ̸= ∅ consists of odd integers and ρ o σ′ is reducible (equivalently,
Jordρ(σ

′) = ∅), then the induced representation ρo σ′ decomposes into two non-

isomorphic irreducible tempered representations, which we denote by τ
(σ′,ρ)
1 and

τ
(σ′,ρ)
−1 . We note that this labeling is completely determined by the choice of ψ
(details can be seen in [11, Section 6]). We denote the maximum of Jordρ by cmax,ρ

and set ϵ((cmax,ρ, ρ)) = 1 if there exists an irreducible representation π′ ∈ R(GL)
such that

σ ↪→ π′ × δ([νρ, νcmax,ρρ])o τ
(σ′,ρ)
1 .

Otherwise, let ϵ((cmax,ρ, ρ)) = −1.

An irreducible representation σ ∈ R(G) is called strongly positive if for
every embedding

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk o σcusp,

such that ρi ∈ R(GL), i = 1, 2, . . . , k , are irreducible cuspidal unitary representa-
tions, and σcusp ∈ R(G) is an irreducible cuspidal representation, we have si > 0
for i = 1, 2, . . . , k .

In [11, Section 1] and [13, Proposition 7.1] it is proved that triples of al-
ternated type correspond to strongly positive discrete series and the definition of
such triples shows that the strongly positive discrete series are completely deter-
mined by their partial cuspidal support and the Jordan block. Since all strongly
positive discrete series which appear in this paper share a common partial cuspidal
support, it suffices to define only Jordan block when introducing these strongly
positive discrete series. This procedure is also summarized in [10, Proposition 1.2].
For cuspidal representation πcusp ∈ Irr(G), we denote by Irr

πcusp
sp (G) the set of all

strongly positive discrete series in Irr(G) whose partial cuspidal support is πcusp .
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3. Some elementary cases

In this section, we begin to determine the Jacquet modules of discrete series repre-
sentation σ with respect to the maximal standard parabolic subgroups by exam-
ining several elementary cases. Here and subsequently, we denote the admissible
triple corresponding to σ by (Jord, σcusp, ϵ).

Throughout the paper we assume that σ is a discrete series representation
of Gn and there are d , d ∈ Jordρ′ such that

σ ↪→ δ([ν−d ρ′, νdρ′])o σsp (3)

for strongly positive representation σsp such that [d , d] ∩ Jordρ′(σsp) = ∅ . Let us
denote the unique discrete series subrepresentation of δ([ν−d ρ′, νdρ′])oσsp different
than σ by σ′ and the admissible triple corresponding to σ′ by (Jord, σcusp, ϵ

′).

We are interested in determining all irreducible constituents of µ∗(σ) of the
form δ ⊗ π , for δ ∈ Irres(GL(nδ, F

′)). We write δ in the form δ([νaρ, νbρ]). It
is well know ([13, Proposition 2.1]) that this implies 2b + 1 ∈ Jordρ . To keep
the notation uniform, for (c, ρ) ∈ Jord we denote by µ∗(σ)(c,ρ) the sum of all
irreducible constituents of µ∗(σ) of the form

δ([νaρ, νcρ])⊗ π.

Let ρ ∈ Irrsc(GL(nρ, F
′)) (this defines nρ ) denote a self-dual representation

such that there is some c ∈ R such that νcρ ⊗ π is an irreducible constituent
of µ∗(σ) for some irreducible representation π . Furthermore, let us denote the
minimal element of Jordρ(σ) by cmin(ρ).

In the following sequence of propositions we determine µ∗(σ)(c,ρ) in some
elementary cases. First we recall the following result [18, Theorem 8.2].

Lemma 3.1. If c ̸= cmin(ρ) and a ≥ c + 2, there is a unique discrete series
representation π(a,ρ) such that σ is a subrepresentation of the induced representa-
tion

δ([νaρ, νcρ])o π(a,ρ).

Using this result, we obtain a description of certain Jacquet modules of σ .

Proposition 3.2. If an irreducible representation δ([νaρ, νcρ]) ⊗ π , for c ̸=
cmin(ρ) and a ≥ c + 2, appears in µ∗(σ), then π is the unique discrete series
representation such that σ is a subrepresentation of δ([νaρ, νcρ]) o π , i.e., π ≃
π(a,ρ) . Furthermore, such irreducible constituent appears in µ∗(σ) with multiplicity
one.

Proof. Using the previous lemma we obtain µ∗(σ) ≥ δ([νaρ, νcρ]) ⊗ π(a,ρ) for
a ≥ c +2. Using the same result we get that there is also a discrete series π′ such
that µ∗(σ′) ≥ δ([νaρ, νcρ])⊗ π′ .

Let us prove that if an irreducible constituent of the form δ([νaρ, νbρ])⊗π′′

appears in µ∗(σ), then π′′ ≃ π(a,ρ) . Applying formula (2) for µ∗ to the right-hand
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side of (3) we obtain that there are −(d + 1) ≤ i ≤ j ≤ d and an irreducible
constituent δ ⊗ τ of µ∗(σsp) such that

δ([νaρ, νcρ]) ≤ δ([ν−iρ′, νd ρ′])× δ([νj+1ρ′, νdρ′])× δ

and

π′′ ≤ δ([νi+1ρ′, νjρ′])o τ.

If (c, ρ) = (d, ρ), since a > d , we obtain i = −(d + 1) and τ ≃ σsp . Similarly,
if (c, ρ) = (d , ρ′), we obtain j = d and again τ ≃ σsp . Finally, if (c, ρ) ̸∈
{(d, ρ′), (d , ρ′)} then, using [7, Theorem 4.6], we deduce that i = −(d + 1),
j = d and τ is a unique strongly positive discrete series such that Jord(τ) =
Jord(σsp) \ {(c, ρ)} ∪ {(2a − 1, ρ)} . In any case, by [10, Theorem 2.1], we obtain
that δ([νi+1ρ′, νjρ′])o τ is a length three representation and in R(G) we have

δ([νi+1ρ′, νjρ′])o τ = π + π′ + L(δ([ν−jρ′, ν−i−1ρ′])o τ).

It follows that both δ([νaρ, νcρ]) ⊗ π and δ([νaρ, νcρ]) ⊗ π′ appear with
multiplicity one in µ∗(δ([ν−c ρ′, νcρ′])oσsp). Thus, since δ([νaρ, νcρ])⊗π′ appears
in µ∗(σ′), it does not appear in µ∗(σ).

Let us now assume that δ([νaρ, νcρ]) ⊗ L(δ([ν−jρ′, ν−i−1ρ′]) o τ) appears
in µ∗(σ). Then the transitivity of Jacquet modules implies that δ([νaρ, νcρ]) ⊗
δ([ν−jρ′, ν−i−1ρ′])⊗ τ is contained in µ∗(σ) and it is now easy to obtain a contra-
diction with the square-integrability of σ . Thus, we obtain that π′′ ≃ π and that
δ([νaρ, νcρ])⊗ π appears in µ∗(σ) with multiplicity one.

If we assume that an irreducible constituent of the form δ([νaρ, νcρ]) ⊗
L(δ([ν−a+1ρ, νc ρ])oσsp) appears in µ∗(σ), transitivity of Jacquet modules imme-
diately provides a contradiction with the square-integrability of σ . This completes
the proof.

As a direct consequence of the previous proposition and [18, Proposi-
tion 7.2], we obtain the following:

Corollary 3.3. Assume c ̸= cmin(ρ) and ϵ((c , ρ)) · ϵ((c, ρ)) = −1. Then

µ∗(σ)(c,ρ) =
c∑

a=c +2

δ([νaρ, νcρ])⊗ π(a,ρ).

In a similar way we handle the case of the minimal element of Jordρ .
Similarly to [18, Theorem 8.2], we obtain:

Lemma 3.4. If cmin(ρ) is an integer, set x = 1, otherwise set x = (2 −
ϵ((cmin(ρ), ρ)))/2. If there is some irreducible representation π such that µ∗(σ) ≥
νcmin(ρ)ρ ⊗ π , then for a ≥ x there exists a unique discrete series representation
π(a,ρ) such that σ is a subrepresentation of the induced representation

δ([νaρ, νcmin(ρ)ρ])o π(a,ρ).
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Proof. Let us first assume that σ is a subrepresentation of the induced rep-
resentation of the same form as in the right-hand side of (3) with (d , ρ′) ̸=
(cmin(ρ), ρ). Using [7], we see that there is an embedding

σsp ↪→ δ([νaρ, νcmin(ρ)ρ])o σ′
sp,

for an appropriate strongly positive discrete series σ′
sp . Thus, we obtain

σ ↪→ δ([ν−d ρ′, νdρ′])× δ([νaρ, νcmin(ρ)ρ])o σ′
sp

≃ δ([νaρ, νcmin(ρ)ρ])× δ([ν−d ρ′, νdρ′])o σ′
sp.

Consequently, there is some irreducible representation π(a,ρ) such that σ is a
subrepresentation of δ([νaρ, νcmin(ρ)ρ]) o π(a,ρ) . Frobenius reciprocity shows that
µ∗(σ) ≥ δ([νaρ, νcmin(ρ)ρ])⊗ π(a,ρ) . Lemma 2.1 implies that there are −(d + 1) ≤
i ≤ j ≤ d and an irreducible constituent δ ⊗ τ of µ∗(σsp) such that

δ([νaρ, νcmin(ρ)ρ]) ≤ δ([ν−iρ′, νd ρ′])× δ([νj+1ρ′, νdρ′])× δ

and
π(a,ρ) ≤ δ([νi+1ρ′, νjρ′])o τ.

It directly follows that δ ≃ δ([νaρ, νcmin(ρ)ρ]) and π(a,ρ) is an irreducible subquo-
tient of δ([ν−d ρ′, νdρ′]) o τ for τ ∈ Irr

σcusp
sp (G) such that [d , d] ∩ Jordρ′(τ) = ∅ .

Using the square-integrability of σ we deduce that π(a,ρ) ̸= L(δ([ν−dρ′, νd ρ′])oτ).
Thus, [10, Theorem 2.1] implies that π(a,ρ) is a discrete series representation and
that δ ⊗ π(a,ρ) appears with multiplicity one. Since the same discussion can be
made for σ′ , the uniqueness of π(a,ρ) follows.

Let us now assume that σ is a subrepresentation of

δ([ν−cmin(ρ)ρ, νdρ])o σsp,

where [cmin(ρ), d]∩Jordρ(σsp) = ∅ , and ϵ(c , ρ) · ϵ(c, ρ) = −1 for c ̸= d . For a > 1
2
,

using [10, Proposition 3.1], we get

σ ↪→ δ([ν−a+1ρ, νdρ])× δ([ν−cmin(ρ)ρ, ν−aρ])o σsp

≃ δ([ν−a+1ρ, νdρ])× δ([νaρ, νcmin(ρ)ρ])o σsp

≃ δ([νaρ, νcmin(ρ)ρ])× δ([ν−a+1ρ, νdρ])o σsp.

In the same way as before we conclude that there is a unique discrete series π(a,ρ)
such that σ is a subrepresentation of δ([νaρ, νcmin(ρ)ρ])o π(a,ρ) .

It remains to consider the case a = 1
2
and ϵ(cmin(ρ), ρ) = 1. By definition,

there is some irreducible representation π(1/2,ρ) such that σ is a subrepresentation
of δ([ν1/2ρ, νcmin(ρ)ρ]) o π(1/2,ρ) . Again, Frobenius reciprocity implies µ∗(σ) ≥
δ([ν1/2ρ, νcmin(ρ)ρ]) ⊗ π(1/2,ρ) , and using Lemma 2.1 we deduce that π(1/2,ρ) is an
irreducible subquotient of δ([ν1/2ρ, νdρ])oσsp . Square-integrability of σ shows that
π(1/2,ρ) ̸= L(δ([ν−dρ, ν−1/2ρ]) o σsp), and by [10, Theorem 5.1] it is the uniquely
defined discrete series. This proves the lemma.

Analogously to Proposition 3.2 we have:
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Proposition 3.5. If cmin(ρ) is an integer then set x = 1, otherwise set x =
(2 − ϵ((cmin(ρ), ρ)))/2. If there is some irreducible representation π such that
µ∗(σ) ≥ νcmin(ρ)ρ⊗ π , then the following equality holds in R(GL)⊗R(G):

µ∗(σ)(cmin(ρ),ρ) =

cmin(ρ)∑
a=x

δ([νaρ, νcmin(ρ)ρ])⊗ π(a,ρ).

In the rest of the paper we are interested in determining µ∗(σ)(c,ρ) for
c ̸= cmin(ρ) and ϵ((c , ρ)) = ϵ((c, ρ)). Thus, to keep things simple, we assume
c = d and ρ ≃ ρ′ , so σ can be given as an irreducible subrepresentation of the
induced representation of the form

σ ↪→ δ([ν−c ρ, νcρ])o σsp (4)

for σsp ∈ Irr
σcusp
sp (G) such that [c , c] ∩ Jordρ(σsp) = ∅ . Let us denote by σind

the induced representation δ([ν−c ρ, νcρ])o σsp and by σ′ a unique discrete series
subrepresentation of σind different than σ . We note that σind is a length three
representation, by [10, Theorem 2.1].

Also, applying (2) to the right-hand side of (4) we see at once that if an
irreducible constituent of the form δ([νaρ, νcρ])⊗π appears in µ∗(σ), then a ≥ c .

Two possible cases shall be examined in separate sections.

4. Case Jordρ(σsp) ̸= ∅ or c non-integral.

Since in the case which we consider in this section the classical-group part π of
an irreducible constituent δ([νaρ, νcρ])⊗π appearing in µ∗(σ)(c,ρ) heavily depends
on the left end of the segment [νaρ, νcρ] , several subcases will be treated sepa-
rately. To simplify the notation, we write µ∗(σ)(a,c,ρ) (resp., µ

∗(σind)(a,c,ρ) ) for the
formal sum of all irreducible constituents of µ∗(σ)(c,ρ) (resp., µ

∗(σind)) of the form
δ([νaρ, νcρ])⊗ π .

We can assume a ≤ c + 1, since in the same way as in the proof of
Proposition 3.2, one can see that µ∗(σ)(ρ,c,a) = δ([νaρ, νcρ])⊗ π(a,ρ) for a ≥ c +2.

Also, it follows from [13, Section 4], that there is a unique irreducible
tempered subrepresentation τ of δ([ν−c ρ, νc ρ])o σsp such that

µ∗(σ)(c +1,c,ρ) = δ([νc +1ρ, νcρ])⊗ τ.

To determine of µ∗(σ)(a,c,ρ) we begin with several elementary but useful
technical results.

Lemma 4.1. Suppose that δ([νaρ, νcρ]) ⊗ π is an irreducible constituent of
µ∗(σind), with a ≤ c . Then δ([νaρ, νcρ])⊗π does not appear in µ∗(L(δ([ν−cρ, νc ρ])o
σsp)).

Proof. Suppose, on the contrary, that δ([νaρ, νcρ]) ⊗ π is an irreducible con-
stituent of µ∗(L(δ([ν−cρ, νc ρ]) o σsp)), for a ≤ c . Then transitivity of Jacquet
modules implies that δ([νc +1ρ, νcρ])⊗ π′ ≤ µ∗(L(δ([ν−cρ , νc ρ])o σsp)) for some
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irreducible representation π′ . But it is well-known ([13, Section 4]) that there are
only two irreducible constituents of the form δ([νc +1ρ , νcρ]) ⊗ π′ appearing in
µ∗(σind) and each of them is contained either in µ∗(σ) or in µ∗(σ′), a contradic-
tion.

Proposition 4.2. For −c +1 ≤ a ≤ c , δ([νaρ, νcρ])⊗L(δ([ν−c ρ, νa−1ρ])oσsp)
appears in µ∗(σ)(a,c,ρ) with multiplicity one.

Proof. From (4) we get

σ ↪→ δ([νaρ, νcρ])× δ([ν−c ρ, νa−1ρ])o σsp

and Frobenius reciprocity shows that the irreducible representation

δ([νaρ, νcρ])⊗ δ([ν−c ρ, νa−1ρ])⊗ σsp

appears in (mµ)∗(σ). By transitivity of Jacquet modules, there is some irreducible
representation π such that µ∗(σ)(a,c,ρ) contains δ([νaρ, νcρ]) ⊗ π and µ∗(π) ≥
δ([ν−c ρ, νa−1ρ])⊗σsp . We determine π by calculating µ∗ of the right-hand side of
(4). By Lemma 2.1, there are −c + 1 ≤ i ≤ j ≤ c and an irreducible constituent
δ ⊗ π′ of µ∗(σsp) such that

δ([νaρ, νcρ]) ≤ δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ])× δ

and
π ≤ δ([νi+1ρ, νjρ])o π′.

Firstly, if −i = a or j + 1 = a , using [7, Theorem 4.6] and the fact that
[c , c] ∩ Jordρ(σsp) = ∅ , we obtain π ≤ δ([ν−c ρ, νa−1ρ])o σsp .

Now we calculate the multiplicity of δ([ν−c ρ, νa−1ρ])⊗ σsp in
µ∗(δ([ν−c ρ, νa−1ρ])o σsp).

Again, there are −c + 1 ≤ i1 ≤ j1 ≤ a− 1 and an irreducible constituent
δ1 ⊗ π1 ≤ µ∗(σsp) such that

δ([ν−c ρ, νa−1ρ]) ≤ δ([ν−i1ρ, νc ρ])× δ([νj1+1ρ, νa−1ρ])× δ1

and
σsp ≤ δ([νi1+1ρ, νj1ρ])o π1.

Since a − 1 < c , we get i1 = −c + 1. Furthermore, the strong positivity of σsp
implies that j1 = −c + 1, so π1 = σsp . Thus, δ([ν−c ρ, νa−1ρ]) ⊗ σsp appears
with multiplicity one in µ∗(δ([ν−c ρ, νa−1ρ]) o σsp). Since it obviously appears in
µ∗(L(δ([ν−c ρ, νa−1ρ])oσsp)), it follows that L(δ([ν−c ρ, νa−1ρ])oσsp) is the unique
irreducible subquotient π2 of δ([ν−c ρ, νa−1ρ]) o σsp such that µ∗(π2) contains
δ([ν−c ρ, νa−1ρ])⊗ σsp .

Secondly, if −i > a and j+1 > a , it follows that δ = δ([νaρ, νbρ]) for some
a ≤ b ≤ c . This further gives δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ]) ≃ δ([νb+1ρ, νcρ]) and
it directly follows that π ≤ δ([νb+1ρ, νc ρ])o π′ , where, by [7, Theorem 4.6], π′ is
the unique element of Irr

σcusp
sp (G) such that Jord(π′) = Jord(σsp) \ {(2b+1, ρ)} ∪

{(2a− 1, ρ)} .
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Since b ≥ a and π′ is a strongly positive representation, it can be seen
directly from (2) that each irreducible constituent of the form δ([ν−c ρ, νdρ])⊗ π′′

appearing in µ∗(δ([νb+1ρ, νc ρ])o π′) satisfies d > a .

Consequently, µ∗(σ)(a,c,ρ) ≥ δ([νaρ, νcρ]) ⊗ L(δ([ν−c ρ, νa−1ρ]) o σsp). We
have already seen that such irreducible constituent appears in µ∗(σind) with mul-
tiplicity two and it can be proved in completely analogous manner that it also
appears in µ∗(σ′). Thus, it appears in µ∗(σ)(a,c,ρ) with multiplicity one.

The following lemma illustrates our general method, and will be used several
times in this paper.

Lemma 4.3. Suppose that π is an irreducible subquotient of δ([ν−c ρ, νcρ])oσsp
for σsp ∈ Irr

σcusp
sp (G) such that [c , c] ∩ Jordρ(σsp) = ∅ and c > min(Jordρ(σsp)).

If there is an irreducible subquotient δ ⊗ π′ of µ∗(π) such that m∗(δ) contains
δ([νaρ, νcρ])⊗δ([ν(c ) +1ρ, νc ρ]), for a ≤ c , and min{d ∈ Jordρ(σsp)∪{c , c} : a ≤
d} ̸= (c ) , then π is the unique discrete series subrepresentation of δ([ν−c ρ, νcρ])o
σsp such that for the corresponding admissible triple (Jord(π), σcusp, ϵπ) we have
ϵπ((c , ρ)) = ϵπ((c, ρ)).

Proof. From Lemma 4.1 we deduce that π is a discrete series subrepresentation
of δ([ν−c ρ, νcρ]) o σsp . Let us denote the corresponding admissible triple by
(Jord(π), σcusp, ϵπ). We will determine δ from µ∗(δ([ν−c ρ, νcρ])oσsp). By Lemma
2.1, there are −c +1 ≤ i ≤ j ≤ c and an irreducible constituent δ′⊗π′′ of µ∗(σsp)
such that

δ ≤ δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ])× δ′.

There are two possibilities to consider:

• a ≤ 0.

Using [7, Theorem 4.6] we deduce that either j+1 = a or −i = a . In the first case,
i = −((c ) + 1) and δ is an irreducible subquotient of the induced representation
δ([ν(c ) +1ρ, νc ρ])× δ([νaρ, νcρ]) which is irreducible ([19]). Thus, in this case

δ ≃ δ([ν(c ) +1ρ, νc ρ])× δ([νaρ, νcρ]).

In the second case, j = (c ) and δ is an irreducible subquotient of the induced
representation δ([νaρ, νc ρ])× δ([ν(c ) +1ρ, νcρ]), which is, by [19], length two rep-
resentation which contains δ([ν(c ) +1ρ , νc ρ])× δ([νaρ, νcρ]) as an irreducible sub-
quotient. Let us determine the multiplicity of δ([νaρ, νcρ])⊗ δ([ν(c ) +1ρ, νc ρ]) in
m∗(δ([νaρ, νc ρ])× δ([ν(c ) +1ρ, νcρ])).

There are a− 1 ≤ i1 ≤ c and (c ) ≤ j1 ≤ c such that

δ([νaρ, νcρ]) ≤ δ([νi1+1ρ, νc ρ])× δ([νj1+1ρ, νcρ])

and
δ([ν(c ) +1ρ, νc ρ]) ≤ δ([νaρ, νi1ρ])× δ([ν(c ) +1ρ, νj1ρ]).

Since a < (c ) + 1, from the first inequality we obtain i1 = a − 1 and j1 =
c . Therefore, δ([νaρ, νcρ]) ⊗ δ([ν(c ) +1ρ, νc ρ]) appears with multiplicity one in
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m∗(δ([νaρ, νc ρ])× δ([ν(c ) +1ρ , νcρ])) and it obviously appears in m∗(δ([ν(c ) +1ρ ,
νc ρ]) × δ([νaρ , νcρ])). Again, we conclude that δ is isomorphic to δ([ν(c ) +1ρ ,
νc ρ])× δ([νaρ, νcρ]).

• a > 0.

If j+1 = a or −i = a , in the same way as before we obtain δ ≃ δ([ν(c ) +1ρ, νc ρ])×
δ([νaρ, νcρ]). It remains to discuss the case when νaρ appears in the cuspidal
support of δ′ . To shorten notation, we denote the minimum of the set {d ∈
Jordρ(σsp) ∪ {c , c} : a ≤ d} by x and the maximal d such that νdρ appears in
cuspidal support of δ′ by y . Since y ∈ Jordρ(σsp), we deduce y < (c ) , since
otherwise we would have y > c , which is impossible. Now from (1) and

δ([νaρ, νcρ])⊗ δ([ν(c ) +1ρ, νc ρ]) ≤ m∗(δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ])× δ′)

we see that there are −i− 1 ≤ i1 ≤ c and j ≤ i2 ≤ c such that

δ([νaρ, νcρ]) ≤ δ([νi1+1ρ, νc ρ])× δ([νi2+1ρ, νcρ])× δ′.

Since neither νaρ nor νyρ appear in the cuspidal support of the representations
δ([νi1+1ρ, νc ρ]) and δ([νi2+1ρ, νcρ]), and m∗(δ([νaρ, νcρ])) ≥ δ([νy+1ρ, νcρ]) ⊗
δ([νaρ, νyρ]), we directly obtain that δ′ ≃ δ([νaρ, νyρ]). [7, Theorem 4.6] now
implies x = y . Further, it follows that m∗(δ([ν−iρ, νc ρ]) × δ([νj+1ρ, νcρ])) con-
tains δ([νx+1ρ, νcρ]) ⊗ δ([ν(c ) +1ρ, νc ρ]). Now it can be easily seen that δ is an
irreducible subquotient of either or both of the following representations:

π1 = δ([νaρ, νxρ])× δ([νx+1ρ, νcρ])× δ([ν(c ) +1ρ, νc ρ]),

π2 = δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ])× δ([ν(c ) +1ρ, νcρ]).

We note that both representations π1 and π2 contain δ([ν
(c ) +1ρ , νc ρ])×δ([νaρ, νcρ])

as an irreducible subquotient. Since x ̸= (c ) , using formula (1) we directly ob-
tain that the multiplicity of δ([νaρ, νcρ])⊗δ([ν(c ) +1ρ, νc ρ]) equals one in m∗(π1),
m∗(π2) and in m∗(δ([νaρ, νcρ]) × δ([ν(c ) +1ρ, νc ρ])). Again we deduce that δ is
isomorphic to δ([νaρ, νcρ])× δ([ν(c ) +1ρ, νc ρ]).

This enables us to conclude that (mµ)∗(π) contains

δ([ν(c ) +1ρ, νc ρ])⊗ δ([νaρ, νcρ])⊗ π′

and [18, Proposition 7.2] gives ϵπ(((c ) , ρ)) = ϵπ((c , ρ)). This characterizes π
uniquely and completes the proof.

The Jacquet modules in the two main cases will be studied separately.

• Case a ≤ 0.

Let us first consider the case a ≤ 0. In the following lemma, applying (2) to
the induced representation (4), we obtain all candidates for irreducible constituents
of µ∗(σ)(a,c,ρ) .
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Lemma 4.4. Suppose a ≤ 0. If c > min(Jordρ(σ)) and −a ≤ (c ) then the
following equality holds in R(GL)⊗R :

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−(c ) ρ, νa−1ρ])o σ′
sp),

for the unique σ′
sp ∈ Irr

σcusp
sp (G) such that Jord(σ′

sp) = Jord(σsp) \ {((c ) , ρ)} ∪
{(c , ρ)}. Otherwise, in R(GL)⊗R we have

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp).

Proof. Let us comment only the case c > min(Jordρ(σ)) and −a ≤ (c )
case. In other cases µ∗(σind)(a,c,ρ) can be obtained in the same way but more
easily. Using Lemma 2.1, we deduce that there are −c + 1 ≤ i ≤ j ≤ c and an
irreducible constituent δ ⊗ π′ of µ∗(σsp) such that

δ([νaρ, νcρ]) ≤ δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ])× δ

and
π ≤ δ([νi+1ρ, νjρ])o π′.

Since a ≤ 0, the strong positivity of σsp implies that either −i = a or j + 1 = a .
Also, π′ ≃ σsp . If −i = a , it directly follows that j = c and if j + 1 = a we have
i = −c + 1. Now [10, Proposition 3.1.(i)] shows that in R(G)

δ([νi+1ρ, νjρ])o σsp = L(δ([ν−c ρ, νa−1ρ])o σsp) + L(δ([ν−(c ) ρ, νa−1ρ])o σ′
sp),

holds, and the lemma is proved.

We are now ready to describe µ∗(σ)(a,c,ρ) for a ≤ 0.

Theorem 4.5. Suppose a ≤ 0. If c > min(Jordρ(σ)), −a ≤ (c ) , and
ϵ(((c ) , ρ)) = ϵ((c , ρ)) then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−(c ) ρ, νa−1ρ])o σ′
sp),

for the unique σ′
sp ∈ Irr

σcusp
sp (G) such that Jord(σ′

sp) = Jord(σsp) \ {((c ) , ρ)} ∪
{(c , ρ)}. Otherwise, in R(GL)⊗R we have

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp).

Proof. We have already seen that δ([νaρ, νcρ]) ⊗ L(δ([ν−c ρ, νa−1ρ]) o σsp)
appears in µ∗(σ)(a,c,ρ) with multiplicity one. Previous lemma enables us to assume
that c > min(Jordρ(σ)) and −a ≤ (c ) . Lemma 4.1 shows that δ([νaρ, νcρ]) ⊗
L(δ([ν−(c ) ρ, νa−1ρ])o σ′

sp) can appear only in µ∗(σ) or in µ∗(σ′).

It is not hard to see that there is a unique π ∈ Irr
σcusp
sp (G) such that σ′

sp is
a subrepresentation of the induced representation

δ([ν(c ) +1ρ, νc ρ])o π.
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This provides an embedding

L(δ([ν−(c ) ρ, νa−1ρ])o σ′
sp) ↪→ δ([ν−(c ) ρ, νa−1ρ])× δ([ν(c ) +1ρ, νc ρ])o π.

Since a ≤ 0, we have

δ([ν−(c ) ρ, νa−1ρ])× δ([ν(c ) +1ρ, νc ρ]) ≃ δ([ν(c ) +1ρ, νc ρ])× δ([ν−(c ) ρ, νa−1ρ])

and by [13, Lemma 3.2] there exists an irreducible representation π′ such that
L(δ([ν−(c ) ρ, νa−1ρ])oσ′

sp) is a subrepresentation of δ([ν(c ) +1ρ, νc ρ])oπ′ . Frobe-
nius reciprocity and transitivity of Jacquet modules show that if δ([νaρ, νcρ]) ⊗
L(δ([ν−(c ) ρ , νa−1ρ])o σ′

sp) appears in µ∗(σ), then (mµ)∗(σ) contains

δ([νaρ, νcρ])⊗ δ([ν(c ) +1ρ, νc ρ])⊗ π′.

Using transitivity of Jacquet modules again, we deduce that there is some
irreducible constituent δ ⊗ π′ of µ∗(σ) such that m∗(δ) contains δ([νaρ, νcρ]) ⊗
δ([ν(c ) +1ρ , νc ρ]). By Lemma 4.3, we have ϵ(((c ) , ρ)) = ϵ((c , ρ)).

On the other hand, since discrete series σ and σ′ are not isomorphic, by
definition of σ we have ϵ(((c ) , ρ)) = ϵ((c , ρ)) if and only if ϵ′(((c ) , ρ)) ̸=
ϵ′((c , ρ)).

Consequently, if δ([νaρ, νcρ])⊗L(δ([ν−(c ) ρ, νa−1ρ])oσ′
sp) appears in µ

∗(σ)
then it is not an irreducible constituent of µ∗(σ′), and the theorem is proved.

• Case a ≥ 1.

We shall now consider the case a ≥ 1. Let us begin with a technical lemma.
From now on, x stands for the minimum of the set {d ∈ Jordρ : a ≤ d} .

Lemma 4.6. Suppose a ≥ 1. If x = c or a = x + 1 then for any irreducible
constituent δ([νaρ, νcρ])⊗ π of µ∗(σind) we have

π ≤ δ([ν−a+1ρ, νc ρ])o σsp.

Otherwise,
π ≤ δ([ν−a+1ρ, νc ρ])o σsp ⊕ δ([ν−xρ, νc ρ])o σ′

sp,

for the unique σ′
sp ∈ Irr

σcusp
sp (G) such that Jord(σ′

sp) = Jord(σsp)\{(x, ρ)}∪{(2a−
1, ρ)}.

Proof. Similarly as in the previous case, we see that there are −c + 1 ≤ i ≤
j ≤ c and an irreducible constituent δ ⊗ π′ of µ∗(σsp) such that

δ([νaρ, νcρ]) ≤ δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ])× δ

and
π ≤ δ([νi+1ρ, νjρ])o π′.

If −i = a or j + 1 = a , we deduce that π ≤ δ([ν−a+1ρ, νc ρ]) o σsp . Otherwise,
[7, Theorem 4.6] implies that a ̸= x + 1 and x < c . This further gives x < c ,
δ ≃ δ([νaρ, νxρ]), and π′ ≃ σ′

sp . Consequently,

δ([νx+1ρ, νcρ]) ≤ δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ])

and in the same way as before we conclude that π ≤ δ([ν−xρ, νc ρ])o σ′
sp .
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In the following sequence of propositions, considering case by case, we
provide a complete description of µ∗(σ)(a,c,ρ) for a ≥ 1.

Proposition 4.7. If a ≥ 1, x = c , and a ̸= x + 1, then there is a unique
discrete series subrepresentation π of δ([ν−a+1ρ, νc ρ])oσsp such that in R(GL)⊗R
we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

2 δ([νaρ, νcρ])⊗ π.

Proof. We have already seen that µ∗(σ)(a,c,ρ) contains an irreducible con-
stituent δ([νaρ, νcρ])⊗L(δ([ν−c ρ, νa−1ρ])oσsp). Furthermore, the following equal-
ity holds in R(GL)⊗R :

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ σ1 + 2 δ([νaρ, νcρ])⊗ σ2,

where σ1 and σ2 are mutually non-isomorphic discrete series subrepresentations
of the induced representations δ([ν−a+1ρ, νc ρ])o σsp .

Since Jordρ(σsp) is non-empty, let us first assume that there is a y ∈ Jordρ

such that y = c .

We denote by σ1 the unique discrete series subrepresentation of the induced
representation δ([ν−a+1ρ, νc ρ]) o σsp which is also a subrepresentation of the
induced representation δ([ν−c ρ, νyρ])oσ′

sp , for the unique σ
′
sp ∈ Irr

σcusp
sp (G) such

that Jord(σ′
sp) = Jord(σsp)\{(y, ρ)}∪{(2a−1, ρ)} . If an irreducible subquotient π′

of σind contains δ([νaρ, νcρ])⊗ σ1 in µ∗(π′), then transitivity of Jacquet modules
shows that (mµ)∗(π′) contains δ([νaρ, νcρ]) ⊗ δ([ν−c ρ, νyρ]) ⊗ σ′

sp . Thus, there
is some irreducible representation δ such that µ∗(π′) ≥ δ ⊗ σ′

sp and m∗(δ) ≥
δ([νaρ, νcρ])⊗ δ([ν−c ρ, νyρ]). Since π′ ≤ σind there are −c + 1 ≤ i ≤ j ≤ c and
an irreducible constituent δ′ ⊗ π′′ of µ∗(σsp) such that

δ ≤ δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ])× δ′.

It directly follows that either −i = −c or j + 1 = −c . If j + 1 = −c , then
i = −c + 1 and δ′ ≃ δ([νaρ, νyρ]), which implies

δ ≃ δ([ν−c ρ, νcρ])× δ([νaρ, νyρ]).

If −i = −c , we get j+1 = c +1 and again δ′ ≃ δ([νaρ, νyρ]). Thus, in this case
δ is an irreducible subquotient of

δ([ν−c ρ, νc ρ])× δ([νc +1ρ, νcρ])× δ([νaρ, νyρ]). (5)

Since δ([ν−c ρ, νcρ]) × δ([νaρ, νyρ]) is an irreducible subquotient of the induced
representation (5), and since it can easily be seen that δ([νaρ, νcρ])⊗δ([ν−c ρ, νyρ])
appears with multiplicity one in both m∗(δ([ν−c ρ , νcρ]) × δ([νaρ, νyρ])) and
m∗(δ([ν−c ρ , νc ρ])×δ([νc +1ρ , νcρ])×δ([νaρ, νyρ])), we again obtain δ ≃ δ([ν−c ρ ,
νcρ])× δ([νaρ , νyρ]).
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Lemma 4.1 shows that π′ ∈ {σ, σ′} . Furthermore, by [18, Proposition 7.2],
π′ ≃ σ implies that ϵ((c, ρ)) = ϵ((y, ρ)). If ϵ((c, ρ)) = ϵ((y, ρ)) then by the
definition of σ′ we have ϵ′((c, ρ)) ̸= ϵ′((y, ρ)) and, consequently, 2 δ([νaρ, νcρ]) ⊗
σ1 ≤ µ∗(σ)(a,c,ρ) . Otherwise, in the same way we conclude that 2 δ([νaρ, νcρ]) ⊗
σ1 ≤ µ∗(σ′)(a,c,ρ) .

We also denote by σ2 the unique discrete series subrepresentation of the
induced representation δ([ν−a+1ρ, νc ρ]) o σsp different than σ1 . Using Lemma
2.1 we see that δ([νaρ, νcρ]) ⊗ σ2 does not appear as an irreducible constituent
of µ∗(δ([ν−cρ, νyρ]) o σ′′

sp) for a unique σ′′
sp ∈ Irr

σcusp
sp (G) such that Jord(σ′

sp) =
Jord(σsp) \ {(y, ρ)} ∪ {(c , ρ)} . Thus, if ϵ((c, ρ)) equals ϵ((y, ρ)), then µ∗(σ)(a,c,ρ)
does not contain δ([νaρ, νcρ])⊗σ2 , since σ is a subrepresentation of δ([ν−cρ, νyρ])o
σ′′
sp . Analogously, if ϵ′((c, ρ)) = ϵ′((y, ρ)) then µ∗(σ′)(a,c,ρ) does not contain
δ([νaρ, νcρ])⊗ σ2 , so Lemma 4.1 implies 2 δ([νaρ, νcρ])⊗ σ2 ≤ µ∗(σ)(a,c,ρ) .

Now we assume c = max(Jordρ) and denote by z the element in Jordρ such
that (c ) = z .

Similarly as in the previous case, let us denote by σ3 the unique discrete
series subrepresentation of δ([ν−a+1ρ, νc ρ])oσsp which is also a subrepresentation
of δ([ν−zρ, νa−1ρ]) o σ′

sp , for the unique σ′
sp ∈ Irr

σcusp
sp (G) such that Jord(σ′

sp) =
Jord(σsp) \ {(z, ρ)} ∪ {(2a − 1, ρ)} . Also, we denote by σ4 the unique discrete
series subrepresentation of δ([ν−a+1ρ, νc ρ]) o σsp different than σ3 . If we let π′

stand for any irreducible subquotient of σind such that δ([νaρ, νcρ])⊗ σ3 appears
in µ∗(π′), then it follows that (mµ)∗(π′) contains

δ([νaρ, νcρ])⊗ δ([ν−zρ, νa−1ρ])⊗ δ([νz+1ρ, νc ρ])⊗ τ,

for some irreducible representation τ . Consequently, there is an irreducible con-
stituent δ′ ⊗ τ appearing in µ∗(π′) such that Jacquet module of δ with re-
spect to the appropriate standard parabolic subgroup contains δ([νaρ, νcρ]) ⊗
δ([ν−zρ, νa−1ρ]) ⊗ δ([νz+1ρ, νc ρ]). Again, there are −c + 1 ≤ i ≤ j ≤ c and
an irreducible constituent δ′ ⊗ π′′ of µ∗(σsp) such that

δ ≤ δ([ν−iρ, νc ρ])× δ([νj+1ρ, νcρ])× δ′.

From the cuspidal support of δ we obtain −z ∈ {−i, j+1} and δ′ ≃ δ([νz+1ρ, νc ρ]).
In the same manner as previously, we get δ ≃ δ([ν−zρ, νcρ])× δ([νz+1ρ, νc ρ]).

This allows us to conclude that ϵ((z, ρ)) = ϵ((c , ρ)) implies that µ∗(σ)(a,c,ρ) ≥
2 δ([νaρ, νcρ]) ⊗ σ3 and µ∗(σ′)(a,c,ρ) ≥ 2 δ([νaρ, νcρ]) ⊗ σ4 . On the other hand,
ϵ((z, ρ)) ̸= ϵ((c , ρ)) leads to µ∗(σ)(a,c,ρ) ≥ 2 δ([νaρ, νcρ]) ⊗ σ4 and µ∗(σ′)(a,c,ρ) ≥
2 δ([νaρ, νcρ])⊗ σ3 . This proves the proposition.

Proposition 4.8. Suppose a ≥ 1, x = c , and a = x + 1. If ϵ((x , ρ)) =
ϵ((c , ρ)) then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ τtemp,

where τtemp stands for the unique irreducible tempered subquotient of δ([ν−a+1ρ,
νc ρ])o σsp .
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If ϵ((x , ρ)) ̸= ϵ((c , ρ)) then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp).

Proof. In R(GL)⊗R we have

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ τtemp,

so it is enough to consider δ([νaρ, νcρ]) ⊗ τtemp . Since τtemp is a subrepresenta-
tion of δ([ν−a+1ρ, νc ρ]) o σsp , using Frobenius reciprocity we conclude that an
irreducible subquotient π of σind such that δ([νaρ, νcρ])⊗ τtemp ≤ µ∗(π) also con-
tains δ([νaρ, νcρ]) ⊗ δ([ν−a+1ρ, νc ρ]) ⊗ σsp in (mµ)∗(π). Therefore, there is an
irreducible constituent δ ⊗ σsp of µ∗(π) such that m∗(δ) contains δ([νaρ, νcρ]) ⊗
δ([ν−a+1ρ, νc ρ]).

Using the same procedure as in the proof of the previous proposition, we
get δ ≤ δ([νaρ, νcρ])× δ([ν−a+1ρ, νc ρ]).

Since δ([νaρ, νc ρ])×δ([ν−a+1ρ, νcρ]) is an irreducible subquotient of the in-
duced representation δ([νaρ, νcρ])× δ([ν−a+1ρ, νc ρ]) and multiplicity of δ([νaρ, νcρ])⊗
δ([ν−a+1ρ, νc ρ]) equals two in both m∗(δ([νaρ , νc ρ]) × δ([ν−a+1ρ, νcρ])) and
m∗(δ([νaρ, νcρ])× δ([ν−a+1ρ, νc ρ])), we conclude that

δ ≃ δ([νaρ, νc ρ])× δ([ν−a+1ρ, νcρ]).

Using [18, Proposition 7.2] and the fact that ϵ((x , ρ)) = ϵ((c , ρ)) if and only if
ϵ′((x , ρ)) ̸= ϵ′((c , ρ)), we deduce that µ∗(σ) contains δ([νaρ, νcρ])⊗ τtemp if and
only if ϵ((x , ρ)) = ϵ((c , ρ)), and it directly follows that µ∗(σ) contains either
both or no copies of δ([νaρ , νcρ])⊗ τtemp . This completes the proof.

Proposition 4.9. Suppose a ≥ 1, x ̸= c , and a = x + 1. If ϵ(((c ) , ρ)) =
ϵ((c , ρ)) then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−(c ) ρ, νa−1ρ])o σ′
sp),

for the unique σ′
sp ∈∈ Irr

σcusp
sp (G) such that Jord(σ′

sp) = Jord(σsp) \ {((c ) , ρ)} ∪
{(c , ρ)}.
If ϵ(((c ) , ρ)) ̸= ϵ((c , ρ)) then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp).

Proof. Since the following equality holds in R(GL)⊗R :

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−(c ) ρ, νa−1ρ])o σ′
sp),
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we discuss only the irreducible constituent δ([νaρ, νcρ])⊗ L(δ([ν−(c ) ρ , νa−1ρ])o
σ′
sp). First, we note the following embeddings and isomorphism:

L(δ([ν−(c ) ρ, νa−1ρ])o σ′
sp) ↪→ δ([ν−(c ) ρ, νa−1ρ])o σ′

sp

↪→ δ([ν−(c ) ρ, νa−1ρ])× δ([ν(c ) +1ρ, νc ρ])o σsp

≃ δ([ν(c ) +1ρ, νc ρ])× δ([ν−(c ) ρ, νa−1ρ])o σsp.

Consequently, if π is an irreducible subquotient of σind such that µ∗(π) contains
δ([νaρ, νcρ])⊗L(δ([ν−(c ) ρ, νa−1ρ])oσ′

sp), then there is some irreducible represen-

tation π′ such that δ([νaρ, νcρ])⊗δ([ν(c ) +1ρ , νc ρ])⊗π′ is contained in (mµ)∗(π).
Applying (2) to µ∗(σind), we conclude that m∗(π) contains the irreducible repre-
sentation

δ([νaρ, νcρ])× δ([ν(c ) +1ρ, νc ρ])⊗ π′.

Now the rest of the proof runs as before.

Proposition 4.10. Suppose a ≥ 1, x ̸= c , and a ̸= x + 1. We denote (c )
by y and suppose x = y . If ϵ((x, ρ)) = ϵ((c , ρ)) then the following equality holds
in R(GL)⊗R :

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(1)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−xρ, νa−1ρ])o σ(2)
sp ) +

+ 4 δ([νaρ, νcρ])⊗ σ1 + δ([νaρ, νc ρ])⊗ σ2,

for unique σ
(1)
sp , σ

(2)
sp ∈ Irr

σcusp
sp (G) such that Jord(σ

(1)
sp ) = Jord(σsp) \ {(x, ρ)} ∪

{(2a− 1, ρ)} and Jord(σ
(2)
sp ) = Jord(σsp) \ {(x, ρ)}∪{(c , ρ)}, while σ1 and σ2 are

mutually non-isomorphic discrete series subrepresentations of δ([ν−xρ, νc ρ])oσ(1)
sp

and σ1 is also a subrepresentation of δ([ν−a+1ρ, νxρ])o σ
(2)
sp .

If ϵ((x, ρ)) ̸= ϵ((c , ρ)) then the following equality holds in R(GL)⊗R :

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(1)
sp ) +

+ δ([νaρ, νc ρ])⊗ σ2,

for σ
(1)
sp and σ2 as above.

Proof. First, in R(GL)⊗R we have (we note that here is also used [9, Propo-
sition 3.2])

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+4 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ
(1)
sp ) +

+2 δ([νaρ, νcρ])⊗ L(δ([ν−xρ, νa−1ρ])o σ
(2)
sp ) +

+4 δ([νaρ, νcρ])⊗ σ1 +

+2 δ([νaρ, νc ρ])⊗ σ2.
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Again, we have already seen that δ([νaρ, νcρ])⊗L(δ([ν−c ρ, νa−1ρ])oσsp) appears
in both µ∗(σ) and µ∗(σ′) with multiplicity one.

It directly follows that both σ and σ′ are irreducible subrepresentations of
the induced representation δ([ν−c ρ, νcρ])×δ([νaρ, νxρ])oσ(1)

sp . It can be easily seen
that δ([νaρ, νcρ])⊗δ([ν−c ρ, νxρ]) appears in m∗(δ([ν−c ρ, νcρ])×δ([νaρ, νxρ])) with
multiplicity two. Now transitivity of Jacquet modules shows that there is some
irreducible constituent δ([νaρ, νcρ])⊗π′ appearing in both µ∗(σ) and µ∗(σ′) such

that µ∗(π′) ≥ δ([ν−c ρ, νxρ])⊗ σ
(1)
sp .

The description of µ∗(σind)(a,c,ρ) implies that π′ ≃ L(δ([ν−c ρ, νxρ])o σ
(1)
sp )

and, since µ∗(L(δ([ν−c ρ, νxρ]) o σ
(1)
sp )) contains δ([ν−c ρ, νxρ]) ⊗σ(1)

sp with mul-

tiplicity one, δ([νaρ, νcρ]) ⊗ L(δ([ν−c ρ, νxρ]) o σ
(1)
sp ) appears in both µ∗(σ) and

µ∗(σ′) with multiplicity two.

On the other hand, L(δ([ν−xρ, νa−1ρ])o σ
(2)
sp ) is a subrepresentation of

δ([ν−xρ, νa−1ρ])× δ([νx+1ρ, νc ρ])o σ(1)
sp .

Since a − 1 < x , Frobenius reciprocity implies that µ∗(L(δ([ν−xρ , νa−1ρ]) o
σ
(2)
sp )) contains δ([ν−xρ, νa−1ρ]) × δ([νx+1ρ, νc ρ]) ⊗ σ

(1)
sp . Consequently, if π is an

irreducible subquotient of σind such that δ([νaρ, νcρ])⊗ L(δ([ν−xρ, νa−1ρ])o σ
(2)
sp )

is contained in µ∗(π), then (mµ)∗(π) contains δ([νaρ, νcρ]) ⊗ δ([ν−xρ, νa−1ρ]) ×
δ([νx+1ρ, νc ρ]) ⊗ σ

(1)
sp . Therefore, there is some irreducible constituent δ ⊗ σ

(1)
sp

of µ∗(π) such that m∗(δ) contains δ([νaρ, νcρ]) ⊗ δ([ν−xρ, νa−1ρ]) × δ([νx+1ρ ,
νc ρ]). From µ∗(σind) we obtain that δ is an irreducible subquotient of δ([ν−xρ ,
νc ρ])× δ([νx+1ρ, νcρ]) and, in a standard way, we conclude that

δ ≃ δ([ν−xρ, νcρ])× δ([νx+1ρ, νc ρ]).

[18, Proposition 7.2] and definition of representations σ and σ′ show that µ∗(σ)

contains δ([νaρ, νcρ])⊗L(δ([ν−xρ, νa−1ρ])oσ(2)
sp ) if and only if ϵ((x, ρ)) = ϵ((c , ρ)).

Now we consider the irreducible constituent δ([νaρ, νcρ]) ⊗ σ1 . From [9,
Proposition 3.2] we obtain the following embeddings and isomorphism:

σ1 ↪→ δ([ν−a+1ρ, νc ρ])o σ(2)
sp

↪→ δ([ν−a+1ρ, νc ρ])× δ([νaρ, νxρ])o σ(1)
sp

≃ δ([νaρ, νxρ])× δ([ν−a+1ρ, νc ρ])o σ(1)
sp

↪→ δ([νaρ, νxρ])× δ([νaρ, νc ρ])× δ([ν−a+1ρ, νa−1ρ])o σ(1)
sp .

Since the representation δ([νaρ, νxρ])×δ([νaρ, νc ρ]) is irreducible, by [13, Lemma 3.2]
there is an irreducible representation τ such that σ1 is a subrepresentation of
δ([νaρ, νxρ]) × δ([νaρ, νc ρ]) o τ , and Frobenius reciprocity implies µ∗(σ1) ≥
δ([νaρ, νxρ])× δ([νaρ, νc ρ])⊗ τ . Consequently, for an irreducible subquotient π of
σind such that µ∗(π) ≥ δ([νaρ, νcρ])⊗σ1 there is some irreducible constituent δ⊗τ
of µ∗(π) such that m∗(δ) contains δ([νaρ, νcρ])⊗ δ([νaρ, νxρ])× δ([νaρ, νc ρ]).

It follows at once from µ∗(σind) and from the cuspidal support of δ that δ
is isomorphic to δ([νaρ, νcρ]) × δ([νaρ, νxρ]) × δ([νaρ, νc ρ]). In the same way as
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before we conclude that µ∗(σ) contains δ([νaρ, νcρ])⊗σ1 if and only if ϵ((x, ρ)) =
ϵ((c , ρ)).

What is left is to show that δ([νaρ, νcρ]) ⊗ σ2 appears in both µ∗(σ) and
µ∗(σ′).

First, we have already seen that δ([ν−xρ, νcρ]) ⊗ L(δ([ν−c ρ , ν−(x+1)ρ]) o
σsp) appears in both µ∗(σ) and µ∗(σ′). Furthermore, we have the following
embeddings and isomorphisms (note that the representation δ([ν−c ρ , ν−x+1ρ])o
σ
(1)
sp is irreducible by the results of [10]):

L(δ([ν−c ρ, ν−x+1ρ])o σsp) ↪→ δ([ν−c ρ, ν−x+1ρ])o σsp

↪→ δ([ν−c ρ, ν−x+1ρ])× δ([νaρ, νxρ])o σ(1)
sp

≃ δ([νaρ, νxρ])× δ([ν−c ρ, ν−x+1ρ])o σ(1)
sp

≃ δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ])o σ(1)
sp .

Using the description of the composition series of representation δ([ν−c ρ, ν−x+1ρ])o
σsp , given in [10, Proposition 3.1], we deduce that there is no irreducible constituent
of the form δ([νx+1ρ, νc ρ])⊗π appearing in µ∗(L(δ([ν−c ρ, ν−x+1ρ])oσsp)). Thus,
L(δ([ν−c ρ , ν−x+1ρ])o σsp) is contained in the kernel of an intertwining operator

δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ])o σ(1)
sp → δ([νx+1ρ, νc ρ])× δ([νaρ, νxρ])o σ(1)

sp ,

which is, according to [19], isomorphic to

L(δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ]))o σ(1)
sp .

In this way we conclude that both (mµ)∗(σ) and (mµ)∗(σ′) contain the irreducible
representation

δ([ν−xρ, νcρ])⊗ L(δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ]))⊗ σ(1)
sp .

If δ⊗σ(1)
sp is an irreducible constituent of µ∗(σ) or µ∗(σ′) such that m∗(δ) contains

δ([ν−xρ, νcρ])⊗L(δ([νaρ, νxρ])×δ([νx+1ρ, νc ρ])), in the same fashion as before we
get that δ is an irreducible subquotient of

δ([ν−xρ, νc ρ])× δ([νc +1ρ, νcρ])× δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ]).

It is not hard to see that the unique irreducible subquotient of this induced
representation which contains δ([ν−xρ, νcρ])⊗L(δ([νaρ, νxρ])×δ([νx+1ρ , νc ρ])) in
the Jacquet module with respect to the appropriate standard parabolic subgroup,
is isomorphic to

δ([ν−xρ, νcρ])× L(δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ]))

(which is irreducible by [3, Lemma 1.3.3]). Thus, δ([ν−xρ, νcρ])×L(δ([νaρ, νxρ])×
δ([νx+1ρ, νc ρ]))⊗ σ

(1)
sp appears in both µ∗(σ) and µ∗(σ′). By (2), such irreducible

constituent appears with multiplicity two in µ∗(σind), so it appears with multiplic-
ity one in both µ∗(σ) and µ∗(σ′).



Matić 23

Using [19] and [3, Lemma 1.3.3]), we can assert that in R(GL) we have

δ([ν−xρ, νcρ])× δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ])

= δ([ν−xρ, νcρ])× δ([νaρ, νc ρ]) +

+ δ([ν−xρ, νcρ])× L(δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ])).

Since δ([νaρ, νcρ])⊗ δ([ν−xρ, νc ρ]) appears with multiplicity three in

m∗(δ([ν−xρ, νcρ])× δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ]))

and with multiplicity two in m∗(δ([ν−xρ, νcρ]) × δ([νaρ , νc ρ])) it follows that
δ([νaρ, νcρ])⊗ δ([ν−xρ, νc ρ]) appears with multiplicity one in

m∗(δ([ν−xρ, νcρ])× L(δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ]))).

Using (2), we also obtain that if δ ⊗ σ
(1)
sp is an irreducible constituent of µ∗(σind)

such that m∗(δ) ≥ δ([νaρ, νcρ]) ⊗ δ([ν−xρ, νc ρ]), then δ is either isomorphic to
δ([ν−xρ, νcρ])×δ([νaρ , νc ρ]) or to δ([ν−xρ, νcρ])×L(δ([νaρ, νxρ])×δ([νx+1ρ, νc ρ])).

Transitivity of Jacquet modules now shows that for π ∈ {σ, σ′} there is
an irreducible constituent δ([νaρ, νcρ]) ⊗ π′ of µ∗(π) such that µ∗(π′) contains

δ([ν−xρ, νc ρ]) ⊗ σ
(1)
sp . The description of µ∗(σind)(a,c,ρ) given in the beginning of

the proof leads to π′ ∈ {σ1, σ2} .
Let us denote by τ the element of {σ, σ′} which is not an irreducible sub-

representation of δ([ν−xρ, νc ρ])o σ′
sp , for the unique σ′

sp ∈ Irr
σcusp
sp (G) such that

Jord(σ′
sp) = Jord(σsp) \ {(x, ρ)} ∪ {(c, ρ)} . Then, as we have already proved,

δ([νaρ, νcρ])⊗ σ1 does not appear in µ∗(τ), and hence δ([νaρ, νcρ])⊗ σ2 ≤ µ∗(τ).
Also, such irreducible constituent appears in µ∗(τ) with multiplicity one, since oth-

erwise δ([νaρ, νcρ])⊗δ([ν−xρ, νc ρ])⊗σ(1)
sp would appear in (mµ)∗(τ) with multiplic-

ity two and, consequently, δ([ν−xρ, νcρ])×L(δ([νaρ, νxρ])× δ([νx+1ρ, νc ρ]))⊗σ
(1)
sp

would appear in µ∗(τ) with multiplicity two, which is impossible.

Therefore, δ([νaρ, νcρ])⊗ σ2 appears in both µ∗(σ) and µ∗(σ′) with multi-
plicity one and the proposition is proved.

Proposition 4.11. Suppose a ≥ 1, x ̸= c , and a ̸= x + 1. We denote (c )
by y and suppose x = y . If ϵ((y, ρ)) = ϵ((c , ρ)) then the following equality holds
in R(GL)⊗R :

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(1)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νa−1ρ])o σ(2)
sp ) +

+ 4 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νxρ])o σ(3)
sp ) +

+ δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νyρ])o σ(4)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ σ1,

for unique σ
(1)
sp , σ

(2)
sp , σ

(3)
sp , σ

(4)
sp ∈ Irr

σcusp
sp (G) such that Jord(σ

(1)
sp ) = Jord(σsp) \

{(x, ρ)} ∪ {(2a− 1, ρ)}, Jord(σ(2)
sp ) = Jord(σsp) \ {(y, ρ)} ∪ {(c , ρ)}, Jord(σ(3)

sp ) =
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Jord(σ
(2)
sp ) \ {(x, ρ)} ∪ {(2a− 1, ρ)} and Jord(σ

(4)
sp ) = Jord(σsp) \ {(y, ρ)} ∪ {(2a−

1, ρ)}, while σ1 denotes the unique discrete series subrepresentation of δ([ν−xρ, νc ρ])o
σ
(1)
sp .

If ϵ((y, ρ)) ̸= ϵ((c , ρ)) then the following equality holds in R(GL)⊗R :

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(1)
sp ) +

+ δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νyρ])o σ(4)
sp ),

for σ
(1)
sp and σ

(4)
sp as above.

Proof. We start with the following equality (again, we obtain σ1 by using [9,
Proposition 3.2]):

µ∗(σind)(a,c,ρ) = 4 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 4 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(1)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νa−1ρ])o σ(2)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νxρ])o σ(3)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νyρ])o σ(4)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ σ1.

In Proposition 4.2 we have seen that δ([νaρ, νcρ])⊗L(δ([ν−c ρ , νa−1ρ])oσsp)
appears in both µ∗(σ) and µ∗(σ′) with multiplicity one.

For π ∈ {L(δ([ν−yρ, νa−1ρ])oσ(2)
sp ), L(δ([ν−yρ, νxρ])oσ(3)

sp ), σ1} it can be di-
rectly seen that µ∗(π) contains an irreducible constituent of the form δ([νy+1ρ, νc ρ])⊗
π′ for some irreducible representation π′ . Thus, if τ is an irreducible subquotient
of σind such that δ([νaρ, νcρ])⊗ π appears in µ∗(τ) for π ∈ {L(δ([ν−yρ, νa−1ρ])o
σ
(2)
sp ), L(δ([ν−yρ, νxρ]) o σ

(3)
sp ), σ1} , then there is an irreducible constituent δ ⊗ π′

of µ∗(τ) such that m∗(δ) contains δ([νaρ, νcρ]) ⊗ δ([νy+1ρ, νc ρ]). Lemma 4.3
shows that δ([νaρ, νcρ]) ⊗ π appears in µ∗(σ) for π ∈ {L(δ([ν−yρ, νa−1ρ]) o
σ
(2)
sp ), L(δ([ν−yρ , νxρ])o σ

(3)
sp ), σ1} if and only if ϵ((y, ρ)) = ϵ((c , ρ)).

On the other hand, both discrete series representations σ and σ′ are sub-
representations of

δ([ν−c ρ, νcρ])× δ([νaρ, νxρ])o σ(1)
sp .

Irreducibility of δ([ν−c ρ, νcρ])×δ([νaρ, νxρ]) and Frobenius reciprocity imply that

µ∗(σ) contains δ([ν−c ρ, νcρ])× δ([νaρ, νxρ])⊗ σ
(1)
sp .

Since m∗(δ([ν−c ρ, νcρ]) × δ([νaρ, νxρ])) contains irreducible constituent
δ([νaρ, νcρ])⊗ δ([ν−c ρ, νxρ]) (with multiplicity two), transitivity of Jacquet mod-
ules shows that there is some irreducible constituent δ([νaρ, νcρ]) ⊗ π of µ∗(σ)

such that µ∗(π) contains δ([ν−c ρ , νxρ])⊗ σ
(1)
sp .

Directly from the description of µ∗(σind) given at the beginning of our proof,

we conclude that π has to be isomorphic to L(δ([ν−c ρ, νxρ])oσ(1)
sp ). Furthermore,

one easily verify that µ∗(L(δ([ν−c ρ, νxρ]) o σ
(1)
sp )) contains δ([ν−c ρ, νxρ]) ⊗ σ

(1)
sp
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with multiplicity one. Consequently, δ([νaρ , νcρ]) ⊗ L(δ([ν−c ρ , νxρ]) o σ
(1)
sp )

appears in µ∗(σ) with multiplicity at least two.

In analogous way we deduce that δ([νaρ, νcρ])⊗L(δ([ν−c ρ , νxρ])oσ(1)
sp ) also

appears in µ∗(σ′) with multiplicity at least two, so δ([νaρ , νcρ])⊗L(δ([ν−c ρ, νxρ])o
σ
(1)
sp ) appears in both µ∗(σ) and µ∗(σ′) with multiplicity two.

Similarly, one can see that δ([νaρ, νcρ])⊗L(δ([ν−c ρ , νyρ])o σ
(4)
sp ) appears

in both µ∗(σ) and µ∗(σ′) with multiplicity one.

Proposition 4.12. Suppose a ≥ 1, x ̸= c , and a ̸= x + 1. We denote (c )
by y and suppose x < y . If ϵ((y, ρ)) = ϵ((c , ρ)) then the following equality holds
in R(GL)⊗R :

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(1)
sp ) +

+ 4 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νx−1ρ])o σ(2)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νa−1ρ])o σ(3)
sp ) +

+ δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νzρ])o σ(4)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νzρ])o σ(5)
sp ),

for unique σ
(1)
sp , σ

(2)
sp , σ

(3)
sp , σ

(4)
sp , σ

(5)
sp ∈ Irr

σcusp
sp (G) such that Jord(σ

(1)
sp ) = Jord(σsp) \

{(x, ρ)} ∪ {(2a− 1, ρ)}, Jord(σ(2)
sp ) = Jord(σ

(2)
sp ) \ {(y, ρ)} ∪ {(c , ρ)}, Jord(σ(3)

sp ) =

Jord(σsp) \ {(y, ρ)}∪{(c , ρ)}, Jord(σ(4)
sp ) = Jord(σsp) \ {(z, ρ)}∪{(2a− 1, ρ)} and

Jord(σ
(5)
sp ) = Jord(σ

(3)
sp ) \ {(z, ρ)} ∪ {(2a− 1, ρ)}.

If ϵ((y, ρ)) ̸= ϵ((c , ρ)) then the following equality holds in R(GL)⊗R :

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(1)
sp ) +

+ δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νzρ])o σ(4)
sp ),

for σ
(1)
sp and σ

(4)
sp as above.

Proof. We just note the equality

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 4 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(1)
sp ) +

+ 4 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νx−1ρ])o σ(2)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νa−1ρ])o σ(3)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νzρ])o σ(4)
sp ) +

+ 2 δ([νaρ, νcρ])⊗ L(δ([ν−yρ, νzρ])o σ(5)
sp ).

The rest of the proof proceeds in a completely analogous manner as the
proof of Proposition 4.11, details being left to the reader.
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• Case a = 1
2

Now we discuss the remaining case a = 1
2
. Throughout the rest of this

section we denote min(Jordρ) by cmin . Again, we start with a technical lemma,
the proof of which we omit, followed by some elementary situations.

Lemma 4.13. If c = cmin or ϵ((cmin, ρ)) = −1 then for any irreducible

constituent δ([ν
1
2ρ, νcρ])⊗ π of µ∗(σind) we have

π ≤ δ([ν
1
2ρ, νc ρ])o σsp,

Otherwise,

π ≤ δ([ν
1
2ρ, νc ρ])o σsp ⊕ δ([ν−cminρ, νc ρ])o σ′

sp,

for the unique σ′
sp ∈ Irr

σcusp
sp (G) such that Jord(σ′

sp) = Jord(σsp) \ {(cmin, ρ)},
i.e., σ′

sp is the unique strongly positive discrete series such that σsp embeds in

δ([ν
1
2ρ, νcminρ])o σ′

sp . Also, ϵσ′
sp
((min(Jordρ(σ

′
sp)), ρ)) = −1, where the admissible

triple attached to σ′
sp is denoted by (Jord(σ′

sp), σcusp, ϵσ′
sp
).

Proposition 4.14. Suppose that c = cmin . If ϵ((c , ρ)) = −1 then in R(GL)⊗
R we have

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp).

If ϵ((c , ρ)) = 1 then in R(GL)⊗R we have

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ σds,

where σds denotes the unique discrete series subquotient of δ([ν−c ρ, ν−
1
2ρ])o σsp .

Proof. One readily sees that

µ∗(σind)( 1
2
,c,ρ) = 2 δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ σds.

It can be deduced from [10, Theorem 5.1] that µ∗(σds) ≥ δ([ν
1
2ρ, νc ρ])⊗σsp . Thus,

if π is an irreducible subquotient of σind such that µ∗(π) contains δ([ν
1
2ρ, νcρ])⊗

σds , then π is a discrete series representation (by Lemma 4.1) and there is an irre-

ducible constituent δ⊗σsp of µ∗(π) such that m∗(δ) ≥ δ([ν
1
2ρ, νcρ])⊗δ([ν 1

2ρ, νc ρ]).
Standard arguments show that

δ ≃ δ([ν
1
2ρ, νcρ])× δ([ν

1
2ρ, νc ρ])

and [18, Proposition 7.4] shows that µ∗(σ) ≥ δ([ν
1
2ρ, νcρ]) ⊗ σds if and only if

ϵ((c , ρ)) = 1. This finishes the proof.
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Proposition 4.15. Suppose c ̸= cmin and ϵ((cmin, ρ)) = −1. If ϵ(((c ) , ρ)) ̸=
ϵ((c , ρ)) then in R(GL)⊗R we have

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp).

If ϵ(((c ) , ρ)) = ϵ((c , ρ)) then in R(GL)⊗R we have

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ τ,

where τ is the unique irreducible subquotient of δ([ν−c ρ, ν−
1
2ρ]) o σsp different

than L(δ([ν−c ρ, ν−
1
2ρ])o σsp).

Proof. The following equality holds in R(GL)⊗R :

µ∗(σind)( 1
2
,c,ρ) = 2 δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ τ,

and the first part of [10, Theorem 5.1] implies that there is some irreducible
constituent of the form δ([ν(c ) +1ρ, νc ρ]) ⊗ π appearing in µ∗(τ). Now one can
see in the same fashion as in the proof of previous proposition that µ∗(σ) ≥
δ([ν

1
2ρ, νcρ])⊗ τ if and only if ϵ(((c ) , ρ)) = ϵ((c , ρ)).

In the rest of this section we assume c ̸= cmin and ϵ((cmin, ρ)) = 1. Let us
denote by x the element of Jordρ such that x = cmin and by y the element of
Jordρ such that (c ) = y .

Proposition 4.16. Suppose x = c , i.e. y = cmin . If ϵ((cmin, ρ)) = ϵ((c , ρ))
then the following equality holds in R(GL)⊗R :

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−cminρ, ν−

1
2ρ])o σ(1)

sp ) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νcminρ])o σ(2)

sp ) +

+ 4 δ([ν
1
2ρ, νcρ])⊗ σ1 +

+ δ([ν
1
2ρ, νcρ])⊗ σ2,

for unique σ
(1)
sp , σ

(2)
sp ∈ Irr

σcusp
sp (G) such that Jord(σ

(1)
sp ) = Jord(σsp) \ {(cmin, ρ)} ∪

{(c , ρ)} and Jord(σ
(2)
sp ) = Jord(σsp) \ {(cmin, ρ)}, while σ1 and σ2 are mutually

non-isomorphic discrete series subrepresentations of δ([ν−cminρ, νc ρ]) o σ
(2)
sp and

µ∗(σ1) contains an irreducible constituent of the form δ([ν
1
2ρ, νcminρ])⊗ τ .

If ϵ((cmin, ρ)) ̸= ϵ((c , ρ)) then the following equality holds in R(GL)⊗R :

µ∗(σ)( 1
2
,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νcminρ])o σ(2)

sp ) +

+ δ([ν
1
2ρ, νcρ])⊗ σ2,

for σ
(2)
sp and σ2 as above.
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Proof. In R(GL)⊗R we have

µ∗(σind)( 1
2
,c,ρ) = 2 δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−cminρ, ν−

1
2ρ])o σ(1)

sp ) +

+ 4 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νcminρ])o σ(2)

sp ) +

+ 4 δ([ν
1
2ρ, νcρ])⊗ σ1 +

+ 2 δ([ν
1
2ρ, νcρ])⊗ σ2.

We have already seen that δ([νaρ, νcρ])⊗L(δ([ν−c ρ, ν−
1
2ρ])oσsp) appears in µ∗(σ)

with multiplicity one.

Furthermore, it follows directly that µ∗(L(δ([ν−cminρ, ν−
1
2ρ]) o σ

(1)
sp )) con-

tains some irreducible constituent of the form

δ([ν−cminρ, ν−
1
2ρ])× δ([νcmin+1ρ, νc ρ])⊗ π.

Thus, if π1 is an irreducible subquotient of σind with the property µ∗(π1) ≥
δ([ν

1
2ρ, νcρ]) ⊗ L(δ([ν−cminρ, ν−

1
2ρ]) o σ

(1)
sp ), then there is some irreducible con-

stituent δ ⊗ π of µ∗(π1) such that

m∗(δ) ≥ δ([ν
1
2ρ, νcρ])⊗ δ([ν−cminρ, ν−

1
2ρ])× δ([νcmin+1ρ, νc ρ]).

From µ∗(σind) we deduce that

δ ≃ δ([νcmin+1ρ, νc ρ])× δ([ν−cminρ, νcρ])

and it follows that µ∗(σ) ≥ δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−cminρ, ν−

1
2ρ])o σ

(1)
sp ) if and only

if ϵ((cmin, ρ)) = ϵ((c , ρ)).

Since, by [10, Theorem 5.1], µ∗(σ1) ≥ δ([ν
1
2ρ, νcminρ])× δ([ν

1
2ρ , νc ρ])⊗ τ ′ ,

for some irreducible representation τ ′ , in the same way we obtain that µ∗(σ) ≥
δ([ν

1
2ρ, νcρ])⊗ σ1 if and only if ϵ((cmin, ρ)) = ϵ(c , ρ)).

From the definition of σ we obtain

σ ↪→ δ([ν−c ρ, νcρ])× δ([ν
1
2ρ, νcminρ])o σ(2)

sp .

Since m∗(δ([ν−c ρ, νcρ]) × δ([ν
1
2ρ, νcminρ])) ≥ 2 δ([ν

1
2ρ, νcρ]) ⊗ δ([ν−c ρ, νcminρ]),

using Frobenius reciprocity we obtain that

δ([ν
1
2ρ, νcρ])⊗ δ([ν−c ρ, νcminρ])⊗ σ(2)

sp

appears with multiplicity two in (mµ)∗(σ).

Transitivity of Jacquet modules implies that there is some irreducible con-
stituent δ([ν

1
2ρ, νcρ])⊗π appearing in µ∗(σ) such that µ∗(π) ≥ δ([ν−c ρ , νcminρ])⊗

σ
(2)
sp . Description of µ∗(σind) given at the beginning of the proof shows that

π ≃ L(δ([ν−c ρ, νcminρ])oσ(2)
sp ). Also, since µ∗(L(δ([ν−c ρ , νcminρ])oσ(2)

sp )) contains

δ([ν−c ρ, νcminρ])⊗σ
(2)
sp with multiplicity one, δ([ν

1
2ρ , νcρ])⊗L(δ([ν−c ρ, νcminρ])o

σ
(2)
sp ) is contained in µ∗(σ) with multiplicity at least two. Examining analogous
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properties of µ∗(σ′) we get that such irreducible constituent is contained in µ∗(σ)
with multiplicity exactly two.

It remains to consider δ([ν
1
2ρ, νcρ]) ⊗ σ2 . First we note that, by [10,

Proposition 3.1], in R(G) we have

δ([νcmin+1ρ, νc ρ])o σsp = L(δ([ν−c ρ, ν−cmin+1ρ])o σsp) + σ(1)
sp .

Since µ∗(δ([νcmin+1ρ, νc ρ])oσsp) contains L(δ([ν
1
2ρ, νcminρ])× δ([νcmin+1ρ, νc ρ]))⊗

σ
(2)
sp and, by [7, Theorem 4.6], such irreducible constituent does not appear in

µ∗(σ
(1)
sp ), it has to appear in µ∗(L(δ([ν−c ρ , ν−cmin+1ρ])o σsp)).

Now from µ∗(σ) ≥ δ([ν
1
2ρ, νcρ])⊗L(δ([ν−c ρ , ν−cmin+1ρ])o σsp), we obtain

that there is some irreducible constituent δ ⊗ σ
(2)
sp of µ∗(σ) such that m∗(δ) ≥

δ([ν
1
2ρ, νcρ]) ⊗ L(δ([ν

1
2ρ, νcminρ]) × δ([νcmin+1ρ , νc ρ])). From µ∗(σind) it is not

hard to see that

δ ≃ δ([ν
1
2ρ, νcρ])× L(δ([ν

1
2ρ, νcminρ])× δ([νcmin+1ρ, νc ρ])).

This gives m∗(δ) ≥ δ([ν
1
2ρ, νcρ]) ⊗ δ([ν−cmin+1ρ, νc ρ]) and, by transitivity of

Jacquet modules, there is some irreducible constituent δ([ν
1
2ρ , νcρ])⊗ π of µ∗(σ)

such that µ∗(π) ≥ δ([ν−cmin+1ρ, νc ρ]) ⊗ σ
(2)
sp . It can be seen directly from the

description of µ∗(σind) that π ∈ {σ1, σ2} .
The same conclusion holds for µ∗(σ′), and in the same way as in the

proof of Proposition 4.10 we obtain that δ([ν
1
2ρ, νcρ])⊗ σ2 appears in µ∗(σ) with

multiplicity one.

Proposition 4.17. Suppose x = y . If ϵ((x, ρ)) = ϵ((c , ρ)) then the following
equality holds in R(GL)⊗R :

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νcminρ])o σ(1)

sp ) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−xρ, ν−

1
2ρ])o σ(2)

sp ) +

+ 4 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−xρ, νcminρ])o σ(3)

sp ) +

+ δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(4)

sp ) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ σ1,

for unique σ
(1)
sp , σ

(2)
sp , σ

(3)
sp , σ

(4)
sp ∈ Irr

σcusp
sp (G) such that Jord(σ

(1)
sp ) = Jord(σsp) \

{(cmin, ρ)}, Jord(σ
(2)
sp ) = Jord(σsp) \ {(x, ρ)} ∪ {(c , ρ)}, Jord(σ

(3)
sp ) = Jord(σsp) \

{(cmin, ρ), (x, ρ)}∪{(c , ρ)} and Jord(σ
(4)
sp ) = Jord(σ

(1)
sp )\{(x, ρ)}∪{(cmin, ρ)}, while

σ1 is the unique discrete series subrepresentation of both induced representations
δ([ν−cminρ, νxρ])o σ

(2)
sp and δ([ν−xρ, νc ρ])o σ

(4)
sp .

If ϵ((x, ρ)) ̸= ϵ((c , ρ)) then the following equality holds in R(GL)⊗R :

µ∗(σ)( 1
2
,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νcminρ])o σ(1)

sp ) +

+ δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(4)

sp ),
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for σ
(1)
sp and σ

(4)
sp as above.

Proof. We provide only the main details of the proof since it mostly parallels
the proof of previous proposition. Using the structural formula (2), [10, Theo-
rem 5.1], and [9, Proposition 3.2], we get

µ∗(σind)( 1
2
,c,ρ) = 2 δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 4 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νcminρ])o σ(1)

sp ) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−xρ, ν−

1
2ρ])o σ(2)

sp ) +

+ 4 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−xρ, νcminρ])o σ(3)

sp ) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(4)

sp ) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ σ1.

For π ∈ {L(δ([ν−xρ, ν−
1
2ρ]) o σ

(2)
sp ), L(δ([ν−xρ, νcminρ]) o σ

(3)
sp ), σ1} there

is some irreducible constituent of the form δ([νx+1ρ, νc ρ]) ⊗ π′ appearing in
µ∗(π). If δ ⊗ π′ is an irreducible constituent of µ∗(σind) such that m∗(δ) ≥
δ([ν

1
2ρ, νcρ]) ⊗ δ([νx+1ρ, νc ρ]), then it can be seen that m∗(δ) also contains

δ([νx+1ρ, νc ρ]) ⊗ δ([ν
1
2ρ, νcρ]). Consequently, µ∗(σ) contains δ([ν

1
2ρ, νcρ]) ⊗ π

for π ∈ {L(δ([ν−xρ, ν−
1
2ρ]) o σ

(2)
sp ), L(δ([ν−xρ, νcminρ]) o σ

(3)
sp ), σ1} if and only if

ϵ((x, ρ)) = ϵ((c , ρ)).

Since both µ∗(σ) and µ∗(σ′) contain δ([ν−c ρ, νcρ])×δ([ν 1
2ρ , νcminρ])⊗σ(1)

sp ,

and δ([ν
1
2ρ, νcρ])⊗ δ([ν−c ρ, νcminρ]) appears with multiplicity two in m∗(δ([ν−c ρ ,

νcρ]) × δ([ν
1
2ρ , νcminρ])), in the same way as in the proof of Proposition 4.16 we

get that µ∗(σ) contains δ([ν
1
2ρ, νcρ])⊗L(δ([ν−c ρ, νcminρ])oσ(1)

sp ) with multiplicity
two.

Similarly, both σ and σ′ are irreducible subrepresentations of

δ([ν−c ρ, νcρ])× L(δ([ν
1
2ρ, νcminρ])× δ([νcmin+1ρ, νxρ]))o σ(4)

sp .

[3, Lemma 1.3.3] shows that the induced representation

δ([ν−c ρ, νcρ])× L(δ([ν
1
2ρ, νcminρ])× δ([νcmin+1ρ, νxρ]))

is irreducible and it is not hard to see, using Frobenius reciprocity and transitivity
of Jacquet modules, that both (mµ)∗(σ) and (mµ)∗(σ′) contain

δ([ν
1
2ρ, νcρ])⊗ δ([ν−c ρ, νxρ])⊗ σ(4)

sp .

Now it can be seen in the same way as before that δ([ν
1
2ρ, νcρ])⊗L(δ([ν−c ρ, νxρ])o

σ
(4)
sp ) appears in µ∗(σ) with multiplicity one. This finishes the proof.

The remaining case is settled in the following proposition. We omit the
proof, since it can be deduced applying the same arguments as in the proof of
previous proposition.
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Proposition 4.18. Suppose x < y . If ϵ((y, ρ)) = ϵ((c , ρ)) then the following
equality holds in R(GL)⊗R :

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νcminρ])o σ(1)

sp ) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−yρ, ν−

1
2ρ])o σ(2)

sp ) +

+ 4 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−yρ, νcminρ])o σ(3)

sp ) +

+ δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(4)

sp ) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−yρ, νxρ])o σ(5)

sp ).

for unique σ
(1)
sp , σ

(2)
sp , σ

(3)
sp , σ

(4)
sp , σ

(5)
sp ∈ Irr

σcusp
sp (G) such that Jord(σ

(1)
sp ) = Jord(σsp) \

{(cmin, ρ)}, Jord(σ
(2)
sp ) = Jord(σsp) \ {(y, ρ)} ∪ {(c , ρ)}, Jord(σ

(3)
sp ) = Jord(σsp) \

{(cmin, ρ), (y, ρ)} ∪ {(c , ρ)}, Jord(σ
(4)
sp ) = Jord(σ

(1)
sp ) \ {(x, ρ)} ∪ {(cmin, ρ)} and

Jord(σ
(5)
sp ) = Jord(σ

(4)
sp ) \ {(y, ρ)} ∪ {(c , ρ)}.

If ϵ((y, ρ)) ̸= ϵ((c , ρ)) then the following equality holds in R(GL)⊗R :

µ∗(σ)( 1
2
,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, ν−

1
2ρ])o σsp) +

+ 2 δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νcminρ])o σ(1)

sp ) +

+ δ([ν
1
2ρ, νcρ])⊗ L(δ([ν−c ρ, νxρ])o σ(4)

sp ),

for σ
(1)
sp and σ

(4)
sp as before.

5. Case Jordρ(σsp) = ∅ and c integral.

The purpose of this section is to provide a description of µ∗(σ)(c,ρ) in an exceptional
case. Throughout this section we assume that c is odd and Jordρ(σsp) = ∅ .
Consequently, c = max(Jordρ(σsp)) and ϵ((c, ρ)) is defined. Furthermore, the
induced representation ρoσcusp is the direct sum of two nonisomorphic tempered
representations, which we denote by τ1 and τ−1 . Also, ϵ((c, ρ)) = i if and only if
there is some irreducible representation π such that σ is a subrepresentation of
π × δ([νρ, νcρ])o τi . Also, ϵ((c, ρ)) ̸= ϵ′((c, ρ)).

Obviously, we only need to consider µ∗(σ)(a,c,ρ) for a ≤ c . The following
theorem provides a description of Jacquet modules in question:

Theorem 5.1. For −c ≤ a ≤ 0, in R(GL)⊗R we have

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp),

while for 1 ≤ a ≤ c we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ σ
(a)
ds ,

where σ
(a)
ds is the unique discrete series subrepresentation of δ([ν−a+1ρ, νc ρ])oσsp

such that for the corresponding admissible triple (Jord(a), σcusp, ϵ
(a)), ϵ(a)((c , ρ)) =

ϵ((c, ρ)) holds.
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Proof. We only comment the case a ≥ 1. In this case it is easy to obtain

µ∗(σind)a,c,ρ = 2 δ([νaρ, νcρ])⊗ L(δ([ν−c ρ, νa−1ρ])o σsp) +

+ 2 δ([νaρ, νcρ])⊗ σ1+

+ 2 δ([νaρ, νcρ])⊗ σ−1,

where σ1 and σ−1 denote mutually non-isomorphic discrete series subrepresenta-
tions of the induced representation δ([ν−a+1ρ , νc ρ])oσsp . Furthermore, we denote

by (Jord(i), σcusp, ϵ
(i)) the admissible triple corresponding to σi , i ∈ {1,−1} , and

assume ϵ(i)((c , ρ)) = i .

Proposition 4.2 shows that it is enough to consider δ([νaρ, νcρ]) ⊗ σ1 and
δ([νaρ, νcρ]) ⊗ σ−1 . Thus, suppose that δ([νaρ, νcρ]) ⊗ σi is an irreducible con-
stituent of µ∗(σ), for some i ∈ {1,−1} . By [17], there is an irreducible represen-
tation π such that (mµ)∗(σi) contains

π ⊗ δ([νρ, νc ρ])⊗ τi.

Consequently, there is some irreducible constituent δ⊗τi of µ∗(σi) such that m∗(δ)
contains π ⊗ δ([νρ, νc ρ]). Calculating µ∗(δ([ν−a+1ρ, νc ρ])o σsp) we deduce that

δ ≃ π′ × δ([νρ, νc ρ])× δ([νρ, νa−1ρ])

where π′ stands for the unique irreducible representation such that π′ ⊗ σcusp ≤
µ∗(σsp) (uniqueness is proved in [7, Theorem 4.6]). Since there are no twists
or ρ appearing in the cuspidal support of π′ , it easily follows that π ≃ π′ ×
δ([νρ, νa−1ρ]) ≃ δ([νρ, νa−1ρ])× π′ .

Transitivity of Jacquet modules shows that

δ([νaρ, νcρ])⊗ δ([νρ, νa−1ρ])× π′ ⊗ δ([νρ, νc ρ])⊗ τi

appears in Jacquet module of σ with respect to an appropriate standard parabolic
subgroup. Hence, there is some irreducible constituent δ′ ⊗ τi of µ

∗(σ) such that
Jacquet module of δ′ with respect to an appropriate standard parabolic subgroup
contains δ([νaρ, νcρ])⊗δ([νρ, νa−1ρ])×π′⊗δ([νρ, νc ρ]). In the same way as before
we conclude that

δ′ ≃ δ([νρ, νcρ])× π′ × δ([νρ, νc ρ])

so (mµ)∗(σ) contains π′ × δ([νρ, νc ρ]) ⊗ δ([νρ, νcρ]) ⊗ τi . It follows that µ∗(σ)
contains some irreducible constituent π′ × δ([νρ, νc ρ]) ⊗ τ such that µ∗(τ) ≥
δ([νρ, νcρ])⊗τi . From µ∗(σind) we directly obtain τ ≤ δ([ρ, νcρ])oσcusp . In R(G)
we have

δ([ρ, νcρ])o σcusp ≤ δ([νρ, νcρ])o τ1 ⊕ δ([νρ, νcρ])o τ−1

and it follows immediately that δ([νρ, νcρ]) ⊗ τi appears with multiplicity one in
Jacquet module of the right-hand side of the previous inequality and, by Frobenius
reciprocity, it also appears in µ∗(δ([νρ, νcρ])oτi). Thus, τ is the unique irreducible
subrepresentation of δ([νρ, νcρ])o τi and [18, Proposition 7.5] shows ϵ((c, ρ)) = i .
Consequently, µ∗(σ) contains δ([νaρ, νcρ])⊗σi if and only if ϵ((c, ρ)) = ϵ(i)((c , ρ)).
This finishes the proof.
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